The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

TEL1  -  Tel1p

Saccharomyces cerevisiae S288c

Synonyms: ATM homolog, DNA-damage checkpoint kinase TEL1, Serine/threonine-protein kinase TEL1, Telomere length regulation protein 1, YBL0706, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of TEL1


High impact information on TEL1

  • The Mre11 nuclease and the ATM-related Tel1 kinase are the first proteins detected at DSBs [4].
  • The rearrangements were primarily deletion of a portion of a chromosome arm along with TEL1-dependent addition of a new telomere. tel1 mutations increased the proportion of translocations observed, and in some cases showed synergistic interactions when combined with mutations that increased the genome rearrangement rate [5].
  • We have cloned tel1+, another fission yeast ATM homologue, and found that a tel1rad3 double mutant lost all telomeric DNA sequences [6].
  • Mutations in the gene TEL1 result in shortened telomeres [3].
  • The closest homolog to TEL1 is the human ataxia telangiectasia gene [3].

Biological context of TEL1


Anatomical context of TEL1


Associations of TEL1 with chemical compounds


Physical interactions of TEL1


Regulatory relationships of TEL1

  • We also demonstrate that overexpression of TEL1 suppresses the ts growth defect and DNA damage sensitivity of rfc5-1 mutants and restores phosphorylation of Rad53 and RNR3 induction in response to DNA damage in rfc5-1 [1].
  • The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction [16].
  • We found that UV irradiation in G(1) in the absence of Mec1 activates a Tel1/MRX-dependent checkpoint, which specifically inhibits the metaphase-to-anaphase transition [17].
  • This may be due to other factors than Rap1p having influence on the telomere length regulation [18].
  • Second, Tel1 can activate the checkpoint response to DSBs independently of Mec1, although its signalling activity only becomes apparent when several DSBs are generated [19].

Other interactions of TEL1


Analytical, diagnostic and therapeutic context of TEL1


  1. Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway. Sugimoto, K., Ando, S., Shimomura, T., Matsumoto, K. Mol. Cell. Biol. (1997) [Pubmed]
  2. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Morrow, D.M., Tagle, D.A., Shiloh, Y., Collins, F.S., Hieter, P. Cell (1995) [Pubmed]
  3. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Greenwell, P.W., Kronmal, S.L., Porter, S.E., Gassenhuber, J., Obermaier, B., Petes, T.D. Cell (1995) [Pubmed]
  4. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Lisby, M., Barlow, J.H., Burgess, R.C., Rothstein, R. Cell (2004) [Pubmed]
  5. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Myung, K., Datta, A., Kolodner, R.D. Cell (2001) [Pubmed]
  6. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Naito, T., Matsuura, A., Ishikawa, F. Nat. Genet. (1998) [Pubmed]
  7. S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association. Goudsouzian, L.K., Tuzon, C.T., Zakian, V.A. Mol. Cell (2006) [Pubmed]
  8. Hyperactivation of the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression. Clerici, M., Paciotti, V., Baldo, V., Romano, M., Lucchini, G., Longhese, M.P. EMBO J. (2001) [Pubmed]
  9. Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes. Craven, R.J., Greenwell, P.W., Dominska, M., Petes, T.D. Genetics (2002) [Pubmed]
  10. The ATM-related Tel1 protein of Saccharomyces cerevisiae controls a checkpoint response following phleomycin treatment. Nakada, D., Shimomura, T., Matsumoto, K., Sugimoto, K. Nucleic Acids Res. (2003) [Pubmed]
  11. ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Nakada, D., Matsumoto, K., Sugimoto, K. Genes Dev. (2003) [Pubmed]
  12. The multiple faces of Set1. Dehé, P.M., Géli, V. Biochem. Cell Biol. (2006) [Pubmed]
  13. Vertebrate tankyrase domain structure and sterile alpha motif (SAM)-mediated multimerization. De Rycker, M., Venkatesan, R.N., Wei, C., Price, C.M. Biochem. J. (2003) [Pubmed]
  14. Budding Yeast Sae2 is an In Vivo Target of the Mec1 and Tel1 Checkpoint Kinases During Meiosis. Cartagena-Lirola, H., Guerini, I., Viscardi, V., Lucchini, G., Longhese, M.P. Cell Cycle (2006) [Pubmed]
  15. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Hardy, C.F., Sussel, L., Shore, D. Genes Dev. (1992) [Pubmed]
  16. Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway. Nakada, D., Hirano, Y., Sugimoto, K. Mol. Cell. Biol. (2004) [Pubmed]
  17. A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1. Clerici, M., Baldo, V., Mantiero, D., Lottersberger, F., Lucchini, G., Longhese, M.P. Mol. Cell. Biol. (2004) [Pubmed]
  18. DNA binding and telomere length regulation of yeast RAP1 homologues. Wahlin, J., Rosén, M., Cohn, M. J. Mol. Biol. (2003) [Pubmed]
  19. Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks. Mantiero, D., Clerici, M., Lucchini, G., Longhese, M.P. EMBO Rep. (2007) [Pubmed]
  20. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Schwartz, M.F., Duong, J.K., Sun, Z., Morrow, J.S., Pradhan, D., Stern, D.F. Mol. Cell (2002) [Pubmed]
  21. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. Vialard, J.E., Gilbert, C.S., Green, C.M., Lowndes, N.F. EMBO J. (1998) [Pubmed]
  22. New function of CDC13 in positive telomere length regulation. Meier, B., Driller, L., Jaklin, S., Feldmann, H.M. Mol. Cell. Biol. (2001) [Pubmed]
  23. Sudden telomere lengthening triggers a Rad53-dependent checkpoint in Saccharomyces cerevisiae. Viscardi, V., Baroni, E., Romano, M., Lucchini, G., Longhese, M.P. Mol. Biol. Cell (2003) [Pubmed]
  24. The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Baroni, E., Viscardi, V., Cartagena-Lirola, H., Lucchini, G., Longhese, M.P. Mol. Cell. Biol. (2004) [Pubmed]
WikiGenes - Universities