The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Phleomycin     6-amino-2-[1-[(2-amino-2- aminocarbonyl...

Synonyms: Phleomycins, AG-K-68779, LS-2086, AC1Q5IVK, AR-1D7738, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Phleomycin


High impact information on Phleomycin


Chemical compound and disease context of Phleomycin


Biological context of Phleomycin

  • Control of in vivo (cellular) phleomycin sensitivity by nuclear genotype, growth phase, and metal ions [12].
  • Stationary-phase haploid yeast cells were more sensitive than exponentially growing cells to killing by phleomycin [12].
  • Mutants exhibiting sensitivities to phleomycin similar to normal strains of the same ploidy were sensitive to ultraviolet radiation [12].
  • Here, we describe another phosphorylation event on serine 1 (S1) of histone H4; this event is also associated with MMS- or phleomycin-induced DSBs but not with UV-induced DNA damage [13].
  • The phleomycin resistance gene was inserted in the place of the gag-pol genes on a plasmid expressing the env gene [14].

Anatomical context of Phleomycin

  • Placed under the control of the strong CMV promoter, these constructs induced intense ADH substrate staining and phleomycin resistance, whatever the position of the ADH gene, in avian or mammalian cell lines [15].
  • In wild-type cells this chimeric protein is imported into the peroxisome, which prevents the neutralizing interaction of the chimeric protein with its toxic phleomycin ligand [16].
  • Stationary-phase Escherichia coli B cells transferred to new growth medium are initially resistant to net DNA breakage by low concentrations of phleomycin, and become sensitive as DNA replication commences [17].
  • Linearised pAN7-1 DNA transformed phleomycin-resistant protoplasts at higher frequencies still [18].
  • The linearized gene trap vector was introduced into mouse embryonic stem cells (ES cells), and 40 phleomycin resistant (phleo') cell lines possessing a single copy of the insert were selected [19].

Associations of Phleomycin with other chemical compounds


Gene context of Phleomycin

  • Vectors that confer high levels of phleomycin (Ph) resistance to Saccharomyces cerevisiae have been constructed with the TEF1 and ENO1 promoters, the Tn5 ble gene and the CYC1 terminator [24].
  • Interestingly, deletion of FBP1 led to reduced sensitivity to MMS, but not to other DNA-damaging agents, such as 4-NQO or phleomycin [25].
  • Finally, Xrs2 is phosphorylated after phleomycin treatment in a TEL1-dependent manner during S phase, whereas no significant Xrs2 phosphorylation is detected after MMS treatment [26].
  • Here we describe an additional set of four completely heterologous loxP-flanked marker cassettes carrying the genes URA3 and LEU2 from Kluyveromyces lactis, his5(+) from Schizosaccharomyces pombe and the dominant resistance marker ble(r) from the bacterial transposon Tn5, which confers resistance to the antibiotic phleomycin [27].
  • H7 parasites were complemented with BAG1 using phleomycin selection [28].

Analytical, diagnostic and therapeutic context of Phleomycin


  1. Effects of DNA superhelical changes induced by ethidium bromide on the DNA-degrading activity of two antitumor antibiotics, bleomycin and phleomycin. Huang, C.H., Mirabelli, C.K., Mong, S., Crooke, S.T. Cancer Res. (1983) [Pubmed]
  2. Inhibition and enhancement of phleomycin-induced DNA breakdown by aromatic tricyclic compounds. Grigg, G.W., Gero, A.M., Sasse, W.H., Sleigh, M.J. Nucleic Acids Res. (1984) [Pubmed]
  3. Inhibition of bacteriophage PBS2 replication in Bacillus subtilis by phleomycin. Post, L., Price, A.R. J. Virol. (1975) [Pubmed]
  4. Induction of alkaline phosphatase in choriocarcinoma cells by 1-beta-D-arabinofuranosyl-cytosine, mitomycin C, phleomycin, and cyclic nucleotides. Chou, J.Y., Robinson, J.C. J. Cell. Physiol. (1977) [Pubmed]
  5. High-level expression of recombinant Aplysia ADP-ribosyl cyclase in offhia pastoris by fermentation. Munshi, C., Lee, H.C. Protein Expr. Purif. (1997) [Pubmed]
  6. The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region. Lee, N., Bakkeren, G., Wong, K., Sherwood, J.E., Kronstad, J.W. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  7. The Mre11 nuclease is not required for 5' to 3' resection at multiple HO-induced double-strand breaks. Llorente, B., Symington, L.S. Mol. Cell. Biol. (2004) [Pubmed]
  8. DNA rearrangements associated with multiple consecutive directed antigenic switches in Trypanosoma brucei. Navarro, M., Cross, G.A. Mol. Cell. Biol. (1996) [Pubmed]
  9. Cleavage of cellular and extracellular Saccharomyces cerevisiae DNA by bleomycin and phleomycin. Moore, C.W. Cancer Res. (1989) [Pubmed]
  10. An Escherichia coli mutant resistant to phleomycin, bleomycin, and heat inactivation is defective in ubiquinone synthesis. Collis, C.M., Grigg, G.W. J. Bacteriol. (1989) [Pubmed]
  11. Identification and analysis of Ku70 and Ku80 homologs in the koji molds Aspergillus sojae and Aspergillus oryzae. Takahashi, T., Masuda, T., Koyama, Y. Biosci. Biotechnol. Biochem. (2006) [Pubmed]
  12. Control of in vivo (cellular) phleomycin sensitivity by nuclear genotype, growth phase, and metal ions. Moore, C.W. Cancer Res. (1982) [Pubmed]
  13. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Cheung, W.L., Turner, F.B., Krishnamoorthy, T., Wolner, B., Ahn, S.H., Foley, M., Dorsey, J.A., Peterson, C.L., Berger, S.L., Allis, C.D. Curr. Biol. (2005) [Pubmed]
  14. A new avian leukosis virus-based packaging cell line that uses two separate transcomplementing helper genomes. Cosset, F.L., Legras, C., Chebloune, Y., Savatier, P., Thoraval, P., Thomas, J.L., Samarut, J., Nigon, V.M., Verdier, G. J. Virol. (1990) [Pubmed]
  15. Generation of small fusion genes carrying phleomycin resistance and Drosophila alcohol dehydrogenase reporter properties: their application in retroviral vectors. Gautier, R., Drocourt, D., Jaffredo, T. Exp. Cell Res. (1996) [Pubmed]
  16. An efficient positive selection procedure for the isolation of peroxisomal import and peroxisome assembly mutants of Saccharomyces cerevisiae. Elgersma, Y., van den Berg, M., Tabak, H.F., Distel, B. Genetics (1993) [Pubmed]
  17. The mechanism of sensitivity to phleomycin in growing Escherichia coli cells. Sleigh, M.J., Grigg, G.W. Biochem. J. (1976) [Pubmed]
  18. Transformation frequencies are enhanced and vector DNA is targeted during retransformation of Leptosphaeria maculans, a fungal plant pathogen. Farman, M.L., Oliver, R.P. Mol. Gen. Genet. (1992) [Pubmed]
  19. Unexpected behavior of a gene trap vector comprising a fusion between the Sh ble and the lacZ genes. Camus, A., Kress, C., Babinet, C., Barra, J. Mol. Reprod. Dev. (1996) [Pubmed]
  20. Internucleosomal cleavage and chromosomal degradation by bleomycin and phleomycin in yeast. Moore, C.W. Cancer Res. (1988) [Pubmed]
  21. DNA damage and growth inhibition in cultured human cells by bleomycin congeners. Berry, D.E., Chang, L.H., Hecht, S.M. Biochemistry (1985) [Pubmed]
  22. Chl1 and Ctf4 are required for damage-induced recombinations. Ogiwara, H., Ui, A., Lai, M.S., Enomoto, T., Seki, M. Biochem. Biophys. Res. Commun. (2007) [Pubmed]
  23. Ubiquinone limits oxidative stress in Escherichia coli. Søballe, B., Poole, R.K. Microbiology (Reading, Engl.) (2000) [Pubmed]
  24. Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance. Gatignol, A., Dassain, M., Tiraby, G. Gene (1990) [Pubmed]
  25. Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae. Kitanovic, A., Wölfl, S. Mutat. Res. (2006) [Pubmed]
  26. The ATM-related Tel1 protein of Saccharomyces cerevisiae controls a checkpoint response following phleomycin treatment. Nakada, D., Shimomura, T., Matsumoto, K., Sugimoto, K. Nucleic Acids Res. (2003) [Pubmed]
  27. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Gueldener, U., Heinisch, J., Koehler, G.J., Voss, D., Hegemann, J.H. Nucleic Acids Res. (2002) [Pubmed]
  28. Disruption of the Toxoplasma gondii bradyzoite-specific gene BAG1 decreases in vivo cyst formation. Zhang, Y.W., Kim, K., Ma, Y.F., Wittner, M., Tanowitz, H.B., Weiss, L.M. Mol. Microbiol. (1999) [Pubmed]
  29. Crystallization and preliminary X-ray data of a phleomycin-binding protein from Streptoalloteichus hindustanus. Rondeau, J.M., Cagnon, C., Moras, D., Masson, J.M. J. Mol. Biol. (1989) [Pubmed]
  30. Phleomycin resistance as a dominant selectable marker for plant cell transformation. Perez, P., Tiraby, G., Kallerhoff, J., Perret, J. Plant Mol. Biol. (1989) [Pubmed]
  31. Genetic changes and bioassays in bleomycin- and phleomycin-treated cells, and their relationship to chromosomal breaks. Koy, J.F., Pleninger, P., Wall, L., Pramanik, A., Martinez, M., Moore, C.W. Mutat. Res. (1995) [Pubmed]
  32. Electron microscopic detection of phleomycin during different waves of replication in regenerating skeletal muscle of mice following staining with mercuric chloride. Pietsch, P., Murray, A. Cytobios (1977) [Pubmed]
  33. T-DNA transfer from Agrobacterium tumefaciens to the ectomycorrhizal fungus Pisolithus microcarpus. Pardo, A.G., Kemppainen, M., Valdemoros, D., Duplessis, S., Martin, F., Tagu, D. Rev. Argent. Microbiol. (2005) [Pubmed]
WikiGenes - Universities