The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

CLINT1  -  clathrin interactor 1

Homo sapiens

Synonyms: CLINT, Clathrin interactor 1, Clathrin-interacting protein localized in the trans-Golgi region, Clint, ENTH, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CLINT1

 

High impact information on CLINT1

  • Adaptors, scaffolds, BAR-domain and ENTH-domain proteins all must be coordinated to carry out this sequence of events prior to the action of dynamin [3].
  • Recently, phosphoinositides have been found to direct the localization and activity of effector proteins containing consensus sequence motifs such as FYVE, PH and ENTH domains [4].
  • Now, recent studies have identified novel ENTH/ANTH proteins that participate in CCV-mediated traffic between the trans-Golgi Network (TGN) and endosomes and have defined a molecular basis for interaction with AP-1 and GGA adaptors in clathrin coats of the TGN/endosomes [5].
  • Key to endocytic CCV formation are proteins containing related phosphoinositide-binding ENTH and ANTH domains [5].
  • Membrane recruitment of these peripheral proteins is mediated by a growing number of modular membrane-targeting domains, including C1, C2, PH, FYVE, PX, ENTH, ANTH, BAR, FERM, and tubby domains, that recognize specific lipid molecules in the membranes [6].
 

Biological context of CLINT1

 

Anatomical context of CLINT1

 

Associations of CLINT1 with chemical compounds

  • In contrast to other ENTH domain-containing proteins, lipid binding is preferential to the 3-phosphate-containing inositol lipids, phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,5-bisphosphate [12].
  • In protein-lipid overlay assays, the epsinR ENTH domain binds to PtdIns(4)P, suggesting a possible mechanism for ARF-dependent recruitment onto TGN membranes [10].
  • A notable feature of Clint is a carboxyl-terminal methionine-rich domain (Met(427)-Met(605)), which contains >17% methionine [13].
  • EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor [14].
  • Epsin 1 and 2 are most similar in their NH(2)-terminal region, which represents a module (epsin NH(2) terminal homology domain, ENTH domain) found in a variety of other proteins of the data base [15].
 

Enzymatic interactions of CLINT1

  • Total Clint values of hydroxy and sulfone metabolite formation catalyzed by all these p450 enzymes were consistently higher for S-lansoprazole than for the R-form [16].
 

Other interactions of CLINT1

  • Solution structure of the epsin N-terminal homology (ENTH) domain of human epsin [17].
  • The amino terminus exhibits multiple copies of leucine-rich nuclear transport signals followed by ENTH, DUF28, and SEC1 homology domains [18].
  • Pleckstrin homology domains, FYVE domains, PX domains, ENTH domains, CALM domains, PDZ domains, PTB domains and FERM domains are all inositide-recognition modules [19].
  • The ENTH domain is a newly found PtdIns(4,5)P2 binding unit conserved among endocytic proteins like epsins, AP180, and the Hip1/Sla2 family [20].
  • The decreased plasma and tissue binding and lower Clint suggest that, in the treatment of azotemic patients with rheumatoid arthritis, the dose of oxaprozin should begin at 600 mg once a day [21].

References

  1. Renal disease, age, and oxazepam kinetics. Murray, T.G., Chiang, S.T., Koepke, H.H., Walker, B.R. Clin. Pharmacol. Ther. (1981) [Pubmed]
  2. Mutations of the Nogo-66 receptor (RTN4R) gene in schizophrenia. Sinibaldi, L., De Luca, A., Bellacchio, E., Conti, E., Pasini, A., Paloscia, C., Spalletta, G., Caltagirone, C., Pizzuti, A., Dallapiccola, B. Hum. Mutat. (2004) [Pubmed]
  3. A pre-synaptic to-do list for coupling exocytosis to endocytosis. Ryan, T.A. Curr. Opin. Cell Biol. (2006) [Pubmed]
  4. The role of phosphoinositides in membrane transport. Simonsen, A., Wurmser, A.E., Emr, S.D., Stenmark, H. Curr. Opin. Cell Biol. (2001) [Pubmed]
  5. ENTH/ANTH domains expand to the Golgi. Duncan, M.C., Payne, G.S. Trends Cell Biol. (2003) [Pubmed]
  6. Membrane-protein interactions in cell signaling and membrane trafficking. Cho, W., Stahelin, R.V. Annual review of biophysics and biomolecular structure. (2005) [Pubmed]
  7. Specific interaction between SNAREs and epsin N-terminal homology (ENTH) domains of epsin-related proteins in trans-Golgi network to endosome transport. Chidambaram, S., Müllers, N., Wiederhold, K., Haucke, V., von Mollard, G.F. J. Biol. Chem. (2004) [Pubmed]
  8. Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics. Wasiak, S., Legendre-Guillemin, V., Puertollano, R., Blondeau, F., Girard, M., de Heuvel, E., Boismenu, D., Bell, A.W., Bonifacino, J.S., McPherson, P.S. J. Cell Biol. (2002) [Pubmed]
  9. The Epsin 4 gene on chromosome 5q, which encodes the clathrin-associated protein enthoprotin, is involved in the genetic susceptibility to schizophrenia. Pimm, J., McQuillin, A., Thirumalai, S., Lawrence, J., Quested, D., Bass, N., Lamb, G., Moorey, H., Datta, S.R., Kalsi, G., Badacsonyi, A., Kelly, K., Morgan, J., Punukollu, B., Curtis, D., Gurling, H. Am. J. Hum. Genet. (2005) [Pubmed]
  10. EpsinR: an ENTH domain-containing protein that interacts with AP-1. Hirst, J., Motley, A., Harasaki, K., Peak Chew, S.Y., Robinson, M.S. Mol. Biol. Cell (2003) [Pubmed]
  11. Partially overlapping distribution of epsin1 and HIP1 at the synapse: analysis by immunoelectron microscopy. Yao, P.J., Bushlin, I., Petralia, R.S. J. Comp. Neurol. (2006) [Pubmed]
  12. HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-phosphoinositides via epsin N-terminal homology domains. Hyun, T.S., Rao, D.S., Saint-Dic, D., Michael, L.E., Kumar, P.D., Bradley, S.V., Mizukami, I.F., Oravecz-Wilson, K.I., Ross, T.S. J. Biol. Chem. (2004) [Pubmed]
  13. Clint: a novel clathrin-binding ENTH-domain protein at the Golgi. Kalthoff, C., Groos, S., Kohl, R., Mahrhold, S., Ungewickell, E.J. Mol. Biol. Cell (2002) [Pubmed]
  14. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Saint-Pol, A., Yélamos, B., Amessou, M., Mills, I.G., Dugast, M., Tenza, D., Schu, P., Antony, C., McMahon, H.T., Lamaze, C., Johannes, L. Dev. Cell (2004) [Pubmed]
  15. The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. Rosenthal, J.A., Chen, H., Slepnev, V.I., Pellegrini, L., Salcini, A.E., Di Fiore, P.P., De Camilli, P. J. Biol. Chem. (1999) [Pubmed]
  16. Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes. Kim, K.A., Kim, M.J., Park, J.Y., Shon, J.H., Yoon, Y.R., Lee, S.S., Liu, K.H., Chun, J.H., Hyun, M.H., Shin, J.G. Drug Metab. Dispos. (2003) [Pubmed]
  17. Solution structure of the epsin N-terminal homology (ENTH) domain of human epsin. Koshiba, S., Kigawa, T., Kikuchi, A., Yokoyama, S. J. Struct. Funct. Genomics (2002) [Pubmed]
  18. Sequence analysis of LRPPRC and its SEC1 domain interaction partners suggests roles in cytoskeletal organization, vesicular trafficking, nucleocytosolic shuttling, and chromosome activity. Liu, L., McKeehan, W.L. Genomics (2002) [Pubmed]
  19. Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. Balla, T. J. Cell. Sci. (2005) [Pubmed]
  20. Regulation of endocytosis by phosphatidylinositol 4,5-bisphosphate and ENTH proteins. Itoh, T., Takenawa, T. Curr. Top. Microbiol. Immunol. (2004) [Pubmed]
  21. Oxaprozin disposition in renal disease. Chiang, S.T., Morrison, G., Knowles, J.A., Ruelius, H.W., Walker, B.R. Clin. Pharmacol. Ther. (1982) [Pubmed]
 
WikiGenes - Universities