The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

PubChem22258     propane-1,3-diol

Synonyms: CPD-347, CHEMBL379652, P50404_ALDRICH, AG-C-82997, AG-F-69709, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of omega-Propanediol

  • Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum [1].
  • The genes for the production of 1,3-propanediol (1,3-PD) in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, are naturally under the control of two different promoters and are transcribed in different directions [2].
  • Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli [3].
  • To answer this question, we studied a complex between a DNA duplex containing an analogue of an abasic site (the 1,3-propanediol site, Pr) and a mutated Lactococcus lactis Fpg (P1G-LlFpg) lacking strand cleavage activity [4].
  • We synthesized DNA duplexes mimicking the U5 region and containing either 2'-aminonucleosides or non-nucleoside 1,3-propanediol insertions at the third and terminal positions and studied their interactions with HIV-1 integrase [5].
 

High impact information on omega-Propanediol

 

Chemical compound and disease context of omega-Propanediol

 

Biological context of omega-Propanediol

 

Anatomical context of omega-Propanediol

  • We have investigated the effects of two kinds of solvents forming the lamellar liquid-crystalline (L(alpha)) phase in phosphatidylcholine (PC) membranes in neat condition, such as formamide and 1,3-propanediol, on phase behaviors of multilamellar vesicle (MLV) of DPPC (DPPC-MLV) [18].
 

Associations of omega-Propanediol with other chemical compounds

  • The dhaF gene is transcribed together with the three structural genes coding for glycerol dehydratase (dhaBCE), whereas dhaG is coexpressed with the dhaT gene encoding 1,3-propanediol dehydrogenase [19].
  • Other polyols such as sucrose, 1,2-propanediol, or 1,3-propanediol also facilitated nucleotide-independent refolding of GS from chaperonin complex [20].
  • The medium-induced folding changes followed by limited peptic hydrolysis show that the cleavage of beta-lactoglobulin by pepsin is triggered by structural transformations induced by ethylene glycol only and not by 1, 2- and 1, 3-propanediol [21].
  • Current development projects within the chemical industry, including lactic acid and 1,3-propanediol based polymers and plastics, indicate that new biotechnological processes and products may soon approach the market place, clearly targeted at the leading petrochemical bulk outlets [22].
  • AIM: To investigate the protective effect against two immune liver injury models in mice by 2-amino-2-(2-(4-octylphenyl) ethyl) propane-1,3-diol hydrochloride and its possible mechanisms in Con A-induced liver damage [23].
 

Gene context of omega-Propanediol

 

Analytical, diagnostic and therapeutic context of omega-Propanediol

References

  1. Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Raynaud, C., Sarçabal, P., Meynial-Salles, I., Croux, C., Soucaille, P. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  2. Construction and characterization of a 1,3-propanediol operon. Skraly, F.A., Lytle, B.L., Cameron, D.C. Appl. Environ. Microbiol. (1998) [Pubmed]
  3. Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. Daniel, R., Boenigk, R., Gottschalk, G. J. Bacteriol. (1995) [Pubmed]
  4. Radiation affects binding of Fpg repair protein to an abasic site containing DNA. Gillard, N., Begusova, M., Castaing, B., Spotheim-Maurizot, M. Radiat. Res. (2004) [Pubmed]
  5. HIV-1 integrase can process a 3'-end crosslinked substrate. Agapkina, J., Smolov, M., Zubin, E., Mouscadet, J.F., Gottikh, M. Eur. J. Biochem. (2004) [Pubmed]
  6. Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Marek, J., Vévodová, J., Smatanová, I.K., Nagata, Y., Svensson, L.A., Newman, J., Takagi, M., Damborský, J. Biochemistry (2000) [Pubmed]
  7. Esterification of terminal phosphate groups in nucleic acids with sorbitol and its application to the isolation of terminal polynucleotide fragments. Ho, N.W., Duncan, R.E., Gilham, P.T. Biochemistry (1981) [Pubmed]
  8. Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5). González-Pajuelo, M., Meynial-Salles, I., Mendes, F., Soucaille, P., Vasconcelos, I. Appl. Environ. Microbiol. (2006) [Pubmed]
  9. An unusual oxygen-sensitive, iron- and zinc-containing alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Ma, K., Adams, M.W. J. Bacteriol. (1999) [Pubmed]
  10. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Biebl, H., Zeng, A.P., Menzel, K., Deckwer, W.D. Appl. Microbiol. Biotechnol. (1998) [Pubmed]
  11. Cryopreservation of the late stage embryos of Spodoptera exigua (Lepidoptera: Noctuidae). Luo, L., Pang, Y., Chen, Q., Li, G. Cryo letters (2006) [Pubmed]
  12. Inactivation of aldehyde dehydrogenase: A key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Zhang, Y., Li, Y., Du, C., Liu, M., Cao, Z. Metab. Eng. (2006) [Pubmed]
  13. Enhancement of 1,3-propanediol production by Klebsiella pneumoniae with fumarate addition. Lin, R., Liu, H., Hao, J., Cheng, K., Liu, D. Biotechnol. Lett. (2005) [Pubmed]
  14. Crystallization and preliminary X-ray crystallographic studies of a complex between the Lactococcus lactis Fpg DNA-repair enzyme and an abasic site containing DNA. Pereira de Jésus, K., Serre, L., Hervouet, N., Bouckson-Castaing, V., Zelwer, C., Castaing, B. Acta Crystallogr. D Biol. Crystallogr. (2002) [Pubmed]
  15. Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae. Du, C., Yan, H., Zhang, Y., Li, Y., Cao, Z. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  16. Inhalation toxicity of 1,3-propanediol in the rat. Scott, R.S., Frame, S.R., Ross, P.E., Loveless, S.E., Kennedy, G.L. Inhalation toxicology. (2005) [Pubmed]
  17. Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Colin, T., Bories, A., Lavigne, C., Moulin, G. Curr. Microbiol. (2001) [Pubmed]
  18. Effects of solvents interacting favorably with hydrophilic segments of the membrane surface of phosphatidylcholine on their gel-phase membranes in water. Li, S.J., Kinoshita, K., Furuike, S., Yamazaki, M. Biophys. Chem. (1999) [Pubmed]
  19. Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. Seifert, C., Bowien, S., Gottschalk, G., Daniel, R. Eur. J. Biochem. (2001) [Pubmed]
  20. Polyols induce ATP-independent folding of GroEL-bound bacterial glutamine synthetase. Voziyan, P.A., Fisher, M.T. Arch. Biochem. Biophys. (2002) [Pubmed]
  21. Secondary structure changes and peptic hydrolysis of beta-lactoglobulin induced by diols. Dib, R., Chobert, J.M., Dalgalarrondo, M., Haertlé, T. Biopolymers (1996) [Pubmed]
  22. Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry. Wilke, D. Appl. Microbiol. Biotechnol. (1999) [Pubmed]
  23. Effect of 2-amino-2-(2-(4-octylphenyl) ethyl) propane-1,3-diol hydrochloride (FTY 720) on immune liver injury in mice. He, J.H., Zhang, H.N., Lin, Z.B. World J. Gastroenterol. (2005) [Pubmed]
  24. Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface. Buchko, G.W., McAteer, K., Wallace, S.S., Kennedy, M.A. DNA Repair (Amst.) (2005) [Pubmed]
  25. Crystal structure of an iron-containing 1,3-propanediol dehydrogenase (TM0920) from Thermotoga maritima at 1.3 A resolution. Schwarzenbacher, R., von Delft, F., Canaves, J.M., Brinen, L.S., Dai, X., Deacon, A.M., Elsliger, M.A., Eshaghi, S., Floyd, R., Godzik, A., Grittini, C., Grzechnik, S.K., Guda, C., Jaroszewski, L., Karlak, C., Klock, H.E., Koesema, E., Kovarik, J.S., Kreusch, A., Kuhn, P., Lesley, S.A., McMullan, D., McPhillips, T.M., Miller, M.A., Miller, M.D., Morse, A., Moy, K., Ouyang, J., Page, R., Robb, A., Rodrigues, K., Selby, T.L., Spraggon, G., Stevens, R.C., van den Bedem, H., Velasquez, J., Vincent, J., Wang, X., West, B., Wolf, G., Hodgson, K.O., Wooley, J., Wilson, I.A. Proteins (2004) [Pubmed]
  26. Glycerol conversion to 1,3-propanediol by Clostridium pasteurianum: cloning and expression of the gene encoding 1,3-propanediol dehydrogenase. Luers, F., Seyfried, M., Daniel, R., Gottschalk, G. FEMS Microbiol. Lett. (1997) [Pubmed]
  27. Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species. Bouvet, O.M., Lenormand, P., Carlier, J.P., Grimont, P.A. Res. Microbiol. (1994) [Pubmed]
  28. Chemoenzymatic synthesis of (E)-3,7-dimethyl-2-octene-1,8-diol isolated from the hairpencils of male Danaus chrysippus (African Monarch). Takabe, K., Mase, N., Hashimoto, H., Tsuchiya, A., Ohbayashi, T., Yoda, H. Bioorg. Med. Chem. Lett. (2003) [Pubmed]
  29. Development of enzyme flow calorimeter system for monitoring of microbial glycerol conversion. Stefuca, V., Vostiar, I., Sefcovicov??, J., Katrl??k, J., Mastihuba, V., Greifov??, M., Gemeiner, P. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  30. Eicosapentaenoic acid modulates the immune response but has no effect on a mimic of antigen-specific responses. Barber, M.D., Fearon, K.C., Ross, J.A. Nutrition (Burbank, Los Angeles County, Calif.) (2005) [Pubmed]
  31. High-level expression of the 1,3-propanediol oxidoreductase from Klebsiella pneumoniae in Escherichia coli. Fenghuan, W., Huijin, Q., He, H., Tan, T. Mol. Biotechnol. (2005) [Pubmed]
 
WikiGenes - Universities