The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Neutron Capture Therapy

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Neutron Capture Therapy


High impact information on Neutron Capture Therapy


Chemical compound and disease context of Neutron Capture Therapy


Anatomical context of Neutron Capture Therapy


Associations of Neutron Capture Therapy with chemical compounds


Gene context of Neutron Capture Therapy


Analytical, diagnostic and therapeutic context of Neutron Capture Therapy


  1. Molecular targeting of the epidermal growth factor receptor for neutron capture therapy of gliomas. Barth, R.F., Yang, W., Adams, D.M., Rotaru, J.H., Shukla, S., Sekido, M., Tjarks, W., Fenstermaker, R.A., Ciesielski, M., Nawrocky, M.M., Coderre, J.A. Cancer Res. (2002) [Pubmed]
  2. Accumulation of boron-10 (10B) in cell cultures exposed to mercaptododecaborate (Na2H(11)10B12SH) used for the neutron capture therapy of brain tumors. Mares, V., Baudysová, M., Kvítek, J., Hnatovicz, V., Cervená, J., Vacík, J., Folbergrová, J. J. Pharmacol. Exp. Ther. (1992) [Pubmed]
  3. Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy. Hainfeld, J.F. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  4. Neutron-capture therapy of human cancer: in vivo results on tumor localization of boron-10-labeled antibodies to carcinoembryonic antigen in the GW-39 tumor model system. Goldenberg, D.M., Sharkey, R.M., Primus, F.J., Mizusawa, E., Hawthorne, M.F. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  5. Effect of L-10B-p-boronophenylalanine-fructose and the boron neutron capture reaction on mouse brain dopaminergic neurons. Setiawan, Y., Halliday, G.M., Harding, A.J., Moore, D.E., Allen, B.J. Cancer Res. (1995) [Pubmed]
  6. Melanin content of hamster tissues, human tissues, and various melanomas. Watts, K.P., Fairchild, R.G., Slatkin, D.N., Greenberg, D., Packer, S., Atkins, H.L., Hannon, S.J. Cancer Res. (1981) [Pubmed]
  7. Gadolinium neutron capture therapy for brain tumors: a computer study. Masiakowski, J.T., Horton, J.L., Peters, L.J. Medical physics. (1992) [Pubmed]
  8. Enhanced delivery of boronophenylalanine for neutron capture therapy of brain tumors using the bradykinin analog Cereport (Receptor-Mediated Permeabilizer-7). Barth, R.F., Yang, W., Bartus, R.T., Moeschberger, M.L., Goodman, J.H. Neurosurgery (1999) [Pubmed]
  9. Boronated metalloporphyrins: a novel approach to the diagnosis and treatment of cancer using contrast-enhanced MR imaging and neutron capture therapy. Huang, L.R., Straubinger, R.M., Kahl, S.B., Koo, M.S., Alletto, J.J., Mazurchuk, R., Chau, R.I., Thamer, S.L., Fiel, R.J. Journal of magnetic resonance imaging : JMRI. (1993) [Pubmed]
  10. Analytical calculation of boron- 10 dosage in cell nucleus for neutron capture therapy. Kobayashi, T., Kanda, K. Radiat. Res. (1982) [Pubmed]
  11. Avidin-dendrimer-(1B4M-Gd)(254): a tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. Kobayashi, H., Kawamoto, S., Saga, T., Sato, N., Ishimori, T., Konishi, J., Ono, K., Togashi, K., Brechbiel, M.W. Bioconjug. Chem. (2001) [Pubmed]
  12. Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy. Shukla, S., Wu, G., Chatterjee, M., Yang, W., Sekido, M., Diop, L.A., Müller, R., Sudimack, J.J., Lee, R.J., Barth, R.F., Tjarks, W. Bioconjug. Chem. (2003) [Pubmed]
  13. Increased neutron penetration in partially deuterated water: application to neutron capture therapy. Kiszenick, W., Fairchild, R.G., Slatkin, D.N., Zubal, G. Medical physics. (1984) [Pubmed]
  14. Evaluation of boron neutron capture effects in cell culture using sulforhodamine-B assay and a colony assay. Wittig, A., Sauerwein, W., Pöller, F., Fuhrmann, C., Hideghéty, K., Streffer, C. Int. J. Radiat. Biol. (1998) [Pubmed]
  15. Boron estrogens: synthesis, biochemical and biological testing of estrone and estradiol-17 beta 3-carboranylmethyl ethers. Sweet, F. Steroids (1981) [Pubmed]
  16. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Wu, G., Barth, R.F., Yang, W., Chatterjee, M., Tjarks, W., Ciesielski, M.J., Fenstermaker, R.A. Bioconjug. Chem. (2004) [Pubmed]
  17. Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy. Pan, X.Q., Wang, H., Shukla, S., Sekido, M., Adams, D.M., Tjarks, W., Barth, R.F., Lee, R.J. Bioconjug. Chem. (2002) [Pubmed]
  18. Strategy for planned radiotherapy of malignant gliomas: postoperative treatment with combinations of high dose proton irradiation and tumor seeking radionuclides. Blomquist, E., Carlsson, J. Int. J. Radiat. Oncol. Biol. Phys. (1992) [Pubmed]
  19. Calculated DNA damage from gadolinium Auger electrons and relation to dose distributions in a head phantom. Goorley, T., Zamenhof, R., Nikjoo, H. Int. J. Radiat. Biol. (2004) [Pubmed]
  20. Synthesis and evaluation of a radiometal-labeled macrocyclic chelator-derivatised thymidine analog. Schmid, M., Neumaier, B., Vogg, A.T., Wczasek, K., Friesen, C., Mottaghy, F.M., Buck, A.K., Reske, S.N. Nucl. Med. Biol. (2006) [Pubmed]
  21. Dendrimer-based nanosized MRI contrast agents. Kobayashi, H., Brechbiel, M.W. Current pharmaceutical biotechnology. (2004) [Pubmed]
  22. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part I: boron neutron capture therapy models. Culbertson, C.N., Wangerin, K., Ghandourah, E., Jevremovic, T. Health physics. (2005) [Pubmed]
WikiGenes - Universities