The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Radioimmunotherapy


High impact information on Radioimmunotherapy


Chemical compound and disease context of Radioimmunotherapy


Biological context of Radioimmunotherapy


Anatomical context of Radioimmunotherapy


Associations of Radioimmunotherapy with chemical compounds


Gene context of Radioimmunotherapy

  • These results suggest that: (a) specific radioimmunotherapy with 90Y-ZCE025 selectively kills cells that express higher levels of CEA; (b) the immunophenotype of the surviving fraction of the tumor appears to slowly revert to its original form; and (c) other tumor markers unrelated to CEA can also be affected [29].
  • The human E48 Ag was originally identified as a target Ag for radioimmunotherapy of patients with squamous cell carcinoma [30].
  • During weeks 2-5 after radioimmunotherapy, significantly up-regulated tumor cell VEGF was only detected in HT-29 (immunohistochemistry; 2-fold; week 4; P < 0.05) [31].
  • After radioimmunotherapy (RAIT) surviving tumor cells upregulate angiogenic growth factors, including placenta growth factor (PlGF), in a tumor-specific pattern [32].
  • Although uptake of In-111 anti-CEA into tumors was lower than that for In-111-labeled anti-Her2, radioimmunotherapy (RIT) with Y-90 anti-CEA was equivalent to that of Y-90 anti-Her2 [33].

Analytical, diagnostic and therapeutic context of Radioimmunotherapy


  1. Anti-CD22 ligand-blocking antibody HB22.7 has independent lymphomacidal properties and augments the efficacy of 90Y-DOTA-peptide-Lym-1 in lymphoma xenografts. Tuscano, J.M., O'Donnell, R.T., Miers, L.A., Kroger, L.A., Kukis, D.L., Lamborn, K.R., Tedder, T.F., DeNardo, G.L. Blood (2003) [Pubmed]
  2. Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide, bismuth 213. Zhang, M., Yao, Z., Garmestani, K., Axworthy, D.B., Zhang, Z., Mallett, R.W., Theodore, L.J., Goldman, C.K., Brechbiel, M.W., Carrasquillo, J.A., Waldmann, T.A. Blood (2002) [Pubmed]
  3. Subsequent chemotherapy regimens are well tolerated after radioimmunotherapy with yttrium-90 ibritumomab tiuxetan for non-Hodgkin's lymphoma. Ansell, S.M., Ristow, K.M., Habermann, T.M., Wiseman, G.A., Witzig, T.E. J. Clin. Oncol. (2002) [Pubmed]
  4. Iodine-131-anti-B1 radioimmunotherapy for B-cell lymphoma. Kaminski, M.S., Zasadny, K.R., Francis, I.R., Fenner, M.C., Ross, C.W., Milik, A.W., Estes, J., Tuck, M., Regan, D., Fisher, S., Glenn, S.D., Wahl, R.L. J. Clin. Oncol. (1996) [Pubmed]
  5. Phase I/II study of iodine 131-labeled monoclonal antibody A33 in patients with advanced colon cancer. Welt, S., Divgi, C.R., Kemeny, N., Finn, R.D., Scott, A.M., Graham, M., Germain, J.S., Richards, E.C., Larson, S.M., Oettgen, H.F. J. Clin. Oncol. (1994) [Pubmed]
  6. Reduction by anti-antibody administration of the radiotoxicity associated with 131I-labeled antibody to carcinoembryonic antigen in cancer radioimmunotherapy. Blumenthal, R.D., Sharkey, R.M., Snyder, D., Goldenberg, D.M. J. Natl. Cancer Inst. (1989) [Pubmed]
  7. Improved biodistribution, tumor targeting, and reduced immunogenicity in mice with a gamma 4 variant of Campath-1H. Hutchins, J.T., Kull, F.C., Bynum, J., Knick, V.C., Thurmond, L.M., Ray, P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  8. Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy. Kozak, R.W., Atcher, R.W., Gansow, O.A., Friedman, A.M., Hines, J.J., Waldmann, T.A. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  9. Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. Chen, S., Yu, L., Jiang, C., Zhao, Y., Sun, D., Li, S., Liao, G., Chen, Y., Fu, Q., Tao, Q., Ye, D., Hu, P., Khawli, L.A., Taylor, C.R., Epstein, A.L., Ju, D.W. J. Clin. Oncol. (2005) [Pubmed]
  10. Effect of platelet-derived growth factor receptor-beta inhibition with STI571 on radioimmunotherapy. Baranowska-Kortylewicz, J., Abe, M., Pietras, K., Kortylewicz, Z.P., Kurizaki, T., Nearman, J., Paulsson, J., Mosley, R.L., Enke, C.A., Ostman, A. Cancer Res. (2005) [Pubmed]
  11. Local hyperthermia and SR 4233 enhance the antitumor effects of radioimmunotherapy in nude mice with human colonic adenocarcinoma xenografts. Wilder, R.B., Langmuir, V.K., Mendonca, H.L., Goris, M.L., Knox, S.J. Cancer Res. (1993) [Pubmed]
  12. Low-dose radioimmunotherapy ((90)Y-PAM4) combined with gemcitabine for the treatment of experimental pancreatic cancer. Gold, D.V., Schutsky, K., Modrak, D., Cardillo, T.M. Clin. Cancer Res. (2003) [Pubmed]
  13. Role of biotin-binding affinity in streptavidin-based pretargeted radioimmunotherapy of lymphoma. Hamblett, K.J., Press, O.W., Meyer, D.L., Hamlin, D.K., Axworthy, D., Wilbur, D.S., Stayton, P.S. Bioconjug. Chem. (2005) [Pubmed]
  14. Enhanced efficacy of radioimmunotherapy combined with systemic chemotherapy and local hyperthermia in xenograft model. Kinuya, S., Yokoyama, K., Konishi, S., Hiramatsu, T., Watanabe, N., Shuke, N., Aburano, T., Takayama, T., Michigishi, T., Tonami, N. Jpn. J. Cancer Res. (2000) [Pubmed]
  15. Indium-111-labeled anti-EGFr-425 scintigraphy in the detection of malignant gliomas. Dadparvar, S., Krishna, L., Miyamoto, C., Brady, L.W., Brown, S.J., Bender, H., Slizofski, W.J., Eshleman, J., Chevres, A., Woo, D.V. Cancer (1994) [Pubmed]
  16. Factors influencing the pharmacokinetics, dosimetry, and diagnostic accuracy of radioimmunodetection and radioimmunotherapy of carcinoembryonic antigen-expressing tumors. Behr, T.M., Sharkey, R.M., Juweid, M.I., Dunn, R.M., Ying, Z., Zhang, C.H., Siegel, J.A., Gold, D.V., Goldenberg, D.M. Cancer Res. (1996) [Pubmed]
  17. High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab' fragments in a human colonic cancer model. Behr, T.M., Béhé, M., Stabin, M.G., Wehrmann, E., Apostolidis, C., Molinet, R., Strutz, F., Fayyazi, A., Wieland, E., Gratz, S., Koch, L., Goldenberg, D.M., Becker, W. Cancer Res. (1999) [Pubmed]
  18. (211)At-labeled and biotinylated effector molecules for pretargeted radioimmunotherapy using poly-L- and poly-D-Lysine as multicarriers. Lindegren, S., Karlsson, B., Jacobsson, L., Andersson, H., Hultborn, R., Skarnemark, G. Clin. Cancer Res. (2003) [Pubmed]
  19. Mechanisms of cell sensitization to alpha radioimmunotherapy by doxorubicin or paclitaxel in multiple myeloma cell lines. Supiot, S., Gouard, S., Charrier, J., Apostolidis, C., Chatal, J.F., Barbet, J., Davodeau, F., Cherel, M. Clin. Cancer Res. (2005) [Pubmed]
  20. Synthesis and biological evaluation of novel macrocyclic ligands with pendent donor groups as potential yttrium chelators for radioimmunotherapy with improved complex formation kinetics. Chong, H.S., Garmestani, K., Ma, D., Milenic, D.E., Overstreet, T., Brechbiel, M.W. J. Med. Chem. (2002) [Pubmed]
  21. Radioimmunotherapy: recent results and future directions. Wilder, R.B., DeNardo, G.L., DeNardo, S.J. J. Clin. Oncol. (1996) [Pubmed]
  22. Pharmacokinetics and bioactivity of 1,4,7,10-tetra-azacylododecane off',N'',N'''-tetraacetic acid (DOTA)-bismuth-conjugated anti-Tac antibody for alpha-emitter (212Bi) therapy. Junghans, R.P., Dobbs, D., Brechbiel, M.W., Mirzadeh, S., Raubitschek, A.A., Gansow, O.A., Waldmann, T.A. Cancer Res. (1993) [Pubmed]
  23. Thyroid radiation doses during radioimmunotherapy of CEA-expressing tumours with 131I-labelled monoclonal antibodies. Behr, T.M., Juweid, M.E., Sharkey, R.M., Dunn, R.M., Ying, Z., Becker, W.S., Siegel, J.A., Goldenberg, D.M. Nuclear medicine communications. (1996) [Pubmed]
  24. Radioimmunotherapy trials in germ testicular carcinoma: a phase I study. Riva, P., Marangolo, M., Tison, V., Moscatelli, G., Franceschi, G., Spinelli, A., Rosti, G., Morigi, P., Riva, N., Tirindelli, D. Int. J. Biol. Markers (1990) [Pubmed]
  25. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. Witzig, T.E., Gordon, L.I., Cabanillas, F., Czuczman, M.S., Emmanouilides, C., Joyce, R., Pohlman, B.L., Bartlett, N.L., Wiseman, G.A., Padre, N., Grillo-López, A.J., Multani, P., White, C.A. J. Clin. Oncol. (2002) [Pubmed]
  26. Direct radiolabeling of monoclonal antibodies with generator-produced rhenium-188 for radioimmunotherapy: labeling and animal biodistribution studies. Griffiths, G.L., Goldenberg, D.M., Knapp, F.F., Callahan, A.P., Chang, C.H., Hansen, H.J. Cancer Res. (1991) [Pubmed]
  27. Nature of the bifunctional chelating agent used for radioimmunotherapy with yttrium-90 monoclonal antibodies: critical factors in determining in vivo survival and organ toxicity. Kozak, R.W., Raubitschek, A., Mirzadeh, S., Brechbiel, M.W., Junghans, R.P., Gansow, O.A., Waldmann, T.A., Junghaus, R. Cancer Res. (1989) [Pubmed]
  28. Enhanced antitumor activity of combination radioimmunotherapy (131I-labeled monoclonal antibody A33) with chemotherapy (fluorouracil). Tschmelitsch, J., Barendswaard, E., Williams, C., Yao, T.J., Cohen, A.M., Old, L.J., Welt, S. Cancer Res. (1997) [Pubmed]
  29. Carcinoembryonic antigen expression of resurgent human colon carcinoma after treatment with therapeutic doses of 90Y-alpha-carcinoembryonic antigen monoclonal antibody. Esteban, J.M., Kuhn, J.A., Felder, B., Wong, J.Y., Battifora, H., Beatty, J.D., Wanek, P.M., Shively, J.E. Cancer Res. (1991) [Pubmed]
  30. A gain of novel tissue specificity in the human Ly-6 gene E48. Brakenhoff, R.H., van Dijk, M., Rood-Knippels, E.M., Snow, G.B. J. Immunol. (1997) [Pubmed]
  31. Tumor-specific regulation of angiogenic growth factors and their receptors during recovery from cytotoxic therapy. Taylor, A.P., Osorio, L., Craig, R., Raleigh, J.A., Ying, Z., Goldenberg, D.M., Blumenthal, R.D. Clin. Cancer Res. (2002) [Pubmed]
  32. Altered tumor vessel maturation and proliferation in placenta growth factor-producing tumors: potential relationship to post-therapy tumor angiogenesis and recurrence. Taylor, A.P., Rodriguez, M., Adams, K., Goldenberg, D.M., Blumenthal, R.D. Int. J. Cancer (2003) [Pubmed]
  33. Combined radioimmunotherapy and chemotherapy of breast tumors with Y-90-labeled anti-Her2 and anti-CEA antibodies with taxol. Crow, D.M., Williams, L., Colcher, D., Wong, J.Y., Raubitschek, A., Shively, J.E. Bioconjug. Chem. (2005) [Pubmed]
  34. Comparative binding and preclinical localization and therapy studies with radiolabeled human chimeric and murine 17-1A monoclonal antibodies. Buchsbaum, D.J., Brubaker, P.G., Hanna, D.E., Glatfelter, A.A., Terry, V.H., Guilbault, D.M., Steplewski, Z. Cancer Res. (1990) [Pubmed]
  35. Nano-sized MRI contrast agents with dendrimer cores. Kobayashi, H., Brechbiel, M.W. Adv. Drug Deliv. Rev. (2005) [Pubmed]
  36. Pancreaticobiliary cancer: the future aspects of medical oncology. van Riel, J.M., Giaccone, G., Pinedo, H.M. Ann. Oncol. (1999) [Pubmed]
  37. Breast epithelial mucin serum clearance. Ceriani, R.L., Blank, E.W. Cancer Lett. (1991) [Pubmed]
WikiGenes - Universities