The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Chromatiaceae


High impact information on Chromatiaceae


Chemical compound and disease context of Chromatiaceae


Gene context of Chromatiaceae

  • This 26% sequence difference is similar to that observed among separate species of chromatiaceae such as Chromatium vinosum, C. gracile, and Thiocapsa roseopersicina, and is suprising because there are no distinguishing microbiological characteristics separating these two R. tenue strains [13].
  • The diversity of Chromatiaceae (six morpho-/pigment types of the genus Chromatium, plus two non identified Chromatiaceae, named PB1 and PB2 were observed) was noticeable [14].


  1. Biogeochemical processes in the saline meromictic Lake Kaiike, Japan: implications from molecular isotopic evidences of photosynthetic pigments. Ohkouchi, N., Nakajima, Y., Okada, H., Ogawa, N.O., Suga, H., Oguri, K., Kitazato, H. Environ. Microbiol. (2005) [Pubmed]
  2. Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. Imhoff, J.F., Kushner, D.J., Kushwaha, S.C., Kates, M. J. Bacteriol. (1982) [Pubmed]
  3. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Jorgensen, B.B., Des Marais, D.J. FEMS Microbiol. Ecol. (1986) [Pubmed]
  4. Cysteine and S-sulfocysteine biosynthesis in phototrophic bacteria. Hensel, G., Trüper, H.G. Arch. Microbiol. (1976) [Pubmed]
  5. Novel thiols of prokaryotes. Fahey, R.C. Annu. Rev. Microbiol. (2001) [Pubmed]
  6. Different lipid A types in lipopolysaccharides of phototrophic and related non-phototrophic bacteria. Weckesser, J., Mayer, H. FEMS Microbiol. Rev. (1988) [Pubmed]
  7. Characterization and in situ carbon metabolism of phototrophic consortia. Glaeser, J., Overmann, J. Appl. Environ. Microbiol. (2003) [Pubmed]
  8. Lipopolysaccharides of Thiocystis violacea, Thiocapsa pfennigii, and Chromatium tepidum, species of the family Chromatiaceae. Meissner, J., Pfennig, N., Krauss, J.H., Mayer, H., Weckesser, J. J. Bacteriol. (1988) [Pubmed]
  9. A new purple sulfur bacterium isolated from a littoral microbial mat, Thiorhodococcus drewsii sp. nov. Zaar, A., Fuchs, G., Golecki, J.R., Overmann, J. Arch. Microbiol. (2003) [Pubmed]
  10. Insertional gene inactivation in a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatium vinosum. Dahl, C. Microbiology (Reading, Engl.) (1996) [Pubmed]
  11. Formation of bacteriochlorophyll form B820 in light harvesting 2 complexes from purple sulfur bacteria treated with dioxane. Makhneva, Z.K., Toropygina, O.A., Moskalenko, A.A. Biochemistry Mosc. (2005) [Pubmed]
  12. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Brocks, J.J., Love, G.D., Summons, R.E., Knoll, A.H., Logan, G.A., Bowden, S.A. Nature (2005) [Pubmed]
  13. The amino acid sequence of a high-redox-potential ferredoxin from the purple phototrophic bacterium, Rhodospirillum tenue strain 2761. Tedro, S.M., Meyer, T.E., Kamen, M. Arch. Biochem. Biophys. (1985) [Pubmed]
  14. Structure and composition of freshwater microbial mats from a sulfur spring ("Font Pudosa", NE Spain). Martínez, A., Pibernat, I., Figueras, J., García-Gil, J. Microbiologia (1997) [Pubmed]
WikiGenes - Universities