The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

luzindole     N-[2-(2-benzyl-1H-indol-3- yl)ethyl]ethanamide

Synonyms: Tocris-0877, CHEMBL286615, SureCN4869000, L2407_SIGMA, CTK8E7069, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of luzindole

  • When administered alone, neither luzindole nor methysergide affected testicular weight or body weight, whereas chronic injections of 5-methyoxyluzindole (10 mg/kg) mimicked the inhibitory effects of melatonin [1].
  • In addition, melatonin's ability to stimulate leptin release (in the presence of insulin) was completely blocked by pertussis toxin and luzindole [2].
  • Taken together, all the results suggested that MT could produce a luzindole and naloxone sensitive reversing effect on NC-induced hyperalgesia at supraspinal and peripheral level in mice [3].
  • Administration of luzindole to the CIP rats reduced PBF, aggravated the histological manifestations of pancreatitis, resulted in the significant augmentation of pancreatic MDA + 4-HNE content, and produced the marked increases of plasma levels of lipase, amylase and TNFalpha, comparing to the values observes in the rats with CIP alone [4].
 

High impact information on luzindole

  • Neither the selective MT2 melatonin receptor antagonists 4P-ADOT and 4P-PDOT (90 microg/mouse, s.c.) nor luzindole (300 microg/mouse, s.c.), which shows 25-fold higher affinity for the MT2 than the mt1 subtype, affected the phase of circadian activity rhythms when given alone at CT 10 [5].
  • The antagonist luzindole blocks the effects of melatonin and acts as an inverse agonist at the Mel(1a) receptor in both intact cells and isolated membranes [6].
  • Neither luzindole, an MT1/MT2 receptor antagonist, nor prazosin, an MT3 receptor antagonist, blocked melatonin-induced current reduction [7].
  • Exposure of the lumen to acid containing perfusate (pH 2.0) for 5 min increased (P < 0.05) the HCO secretion from 5.85 +/- 0.82 to 12.35 +/- 1.51 micro Eq/cm/hr, and luzindole significantly inhibited (P < 0.05) this rise in secretion [8].
  • Selective antagonists of the hMT2 (4-phenyl-2-propionamidotetraline and luzindole) were poor competitors of 2-[125I]iodomelatonin binding to the recombinant receptor [9].
 

Biological context of luzindole

  • However, at melatonin concentrations above 100 nM, luzindole potentiated the contractile response, suggesting blockade of MT(2) receptors mediating vasorelaxation and/or an inverse agonist effect at MT(1) constitutively active receptors [10].
  • During proestrus, both luzindole (0.1 microM) and 4-phenyl-2-propionamidotetraline (4P-PDOT) (0.1 microM), acting as inverse agonists, inhibited basal [35S]GTPgammaS binding to ovarian sections, suggesting the presence of MT1 constitutively active melatonin receptors [11].
  • Perivascular application of luzindole alone had no significant effect but abolished vasoconstriction induced by melatonin (-0.5 +/- 0.7 and + 3.0 +/- 1.2 microm at 60 and 600 ng/kg/h respectively) [12].
  • We found that melatonin (10(-3) and 10(-6) M/L) stimulated cell proliferation in dose- and time-depending manner, and this effect was inhibited by a relatively selective MT2 receptor antagonist - luzindole (10(-4) M/L) [13].
 

Anatomical context of luzindole

 

Associations of luzindole with other chemical compounds

  • The binding was inhibited by Mel1b melatonin receptor antagonists, luzindole and 4-phenyl-2-propionamidotetralin (4-P-PDOT) as well as by non-hydrolyzable analogs of GTP like GTPgammaS and Gpp(NH)p but not by adenosine nucleotides [18].
  • Cerebral arterioles were exposed to two doses of melatonin (3x10-9 and 3x10-8 M) in the absence and presence of the mt1 and/or MT2 receptor antagonist, luzindole (2x10-6 M) and the Ca2+-activated K+ (BKCa) channel blocker, tetraethylammonium (TEA+, 10(-4) M) [19].
 

Gene context of luzindole

  • Furthermore, because luzindole, an MT1 and MT2 blocker, caused the antitumor effect or rhythm disturbance effect of MLT to decrease, it is suggested that the time-dependent change of the pharmacological effects of MLT were influenced by that of MLT receptor(s) function [20].
  • Dissociation constants for competition of 11 partial agonists and antagonist for 2-[125I]-iodomelatonin binding were between 15.5 (luzindole, pKi: 7.7) to 362 (4-phenyl-2-chloroacetamidotetraline, pKi: 9.1) fold higher for the Mel1b than for the Mel1a melatonin receptor [21].
  • The anti-immobility effect of the selective melatonin receptor antagonist, luzindole, was investigated in the behavioral despair test using three different strains (C3H/HeN, C57BL/6J and albino ND/4) of mice [22].
  • The G-protein-coupled melatonin receptor antagonist luzindole abrogated the cytotoxic and mitochondrial effects [23].
  • MATERIALS AND METHODS: Splenocytes and peripheral blood mononuclear cells (PBMC) were cultured in vitro in the presence of melatonin, phytohemagglutinin, luzindole, dibutyrylcAMP (dbcAMP), forskolin and vasoactive intestine peptide (VIP) [24].

References

  1. Effects of melatonin agonists and antagonists on reproduction and body weight in the Siberian hamster. Duncan, M.J., Fang, J.M., Dubocovich, M.L. J. Pineal Res. (1990) [Pubmed]
  2. Melatonin enhances leptin expression by rat adipocytes in the presence of insulin. Alonso-Vale, M.I., Andreotti, S., Peres, S.B., Anhê, G.F., das Neves Borges-Silva, C., Neto, J.C., Lima, F.B. Am. J. Physiol. Endocrinol. Metab. (2005) [Pubmed]
  3. Effects of melatonin on orphanin FQ/nociceptin-induced hyperalgesia in mice. Wang, T., Li, S.R., Dai, X., Peng, Y.L., Chen, Q., Wang, R. Brain Res. (2006) [Pubmed]
  4. Role of endogenous melatonin and its MT2 receptor in the modulation of caerulein-induced pancreatitis in the rat. Jaworek, J., Konturek, S.J., Leja-Szpak, A., Nawrot, K., Bonior, J., Tomaszewska, R., Stachura, J., Pawlik, W.W. J. Physiol. Pharmacol. (2002) [Pubmed]
  5. Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. Dubocovich, M.L., Yun, K., Al-Ghoul, W.M., Benloucif, S., Masana, M.I. FASEB J. (1998) [Pubmed]
  6. Tight association of the human Mel(1a)-melatonin receptor and G(i): precoupling and constitutive activity. Roka, F., Brydon, L., Waldhoer, M., Strosberg, A.D., Freissmuth, M., Jockers, R., Nanoff, C. Mol. Pharmacol. (1999) [Pubmed]
  7. Melatonin inhibits outward delayed rectifier potassium currents in hippocampal CA1 pyramidal neuron via intracellular indole-related domains. Hou, S.W., Zheng, P., Sun, F.Y. J. Pineal Res. (2004) [Pubmed]
  8. Melatonin in the duodenal lumen is a potent stimulant of mucosal bicarbonate secretion. Sjöblom, M., Flemström, G. J. Pineal Res. (2003) [Pubmed]
  9. First cloning and functional characterization of a melatonin receptor in fish brain: a novel one? Gaildrat, P., Becq, F., Falcón, J. J. Pineal Res. (2002) [Pubmed]
  10. MT(2) melatonin receptors are present and functional in rat caudal artery. Masana, M.I., Doolen, S., Ersahin, C., Al-Ghoul, W.M., Duckles, S.P., Dubocovich, M.L., Krause, D.N. J. Pharmacol. Exp. Ther. (2002) [Pubmed]
  11. Functional melatonin receptors in rat ovaries at various stages of the estrous cycle. Soares, J.M., Masana, M.I., Erşahin, C., Dubocovich, M.L. J. Pharmacol. Exp. Ther. (2003) [Pubmed]
  12. Melatonin increases pial artery tone and decreases the lower limit of cerebral blood flow autoregulation. Régrigny, O., Delagrange, P., Scalbert, E., Atkinson, J., Chillon, J.M. Fundamental & clinical pharmacology. (2001) [Pubmed]
  13. Influence of melatonin on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes - an in vitro study. Zwirska-Korczala, K., Jochem, J., Adamczyk-Sowa, M., Sowa, P., Polaniak, R., Birkner, E., Latocha, M., Pilc, K., Suchanek, R. J. Physiol. Pharmacol. (2005) [Pubmed]
  14. The melatonin antagonist luzindole protects retinal photoreceptors from light damage in the rat. Sugawara, T., Sieving, P.A., Iuvone, P.M., Bush, R.A. Invest. Ophthalmol. Vis. Sci. (1998) [Pubmed]
  15. Melatonin-induced inhibition of spinal cord synaptic potentiation in rats is MT2 receptor-dependent. Noseda, R., Hernández, A., Valladares, L., Mondaca, M., Laurido, C., Soto-Moyano, R. Neurosci. Lett. (2004) [Pubmed]
  16. Effect of putative melatonin receptor antagonists on melatonin-induced pigment aggregation in isolated Xenopus laevis melanophores. Sugden, D. Eur. J. Pharmacol. (1992) [Pubmed]
  17. Acute low doses of melatonin restore full sexual activity in impotent male rats. Drago, F., Busa', L. Brain Res. (2000) [Pubmed]
  18. Receptor-mediated modulation of avian caecal muscle contraction by melatonin: role of tyrosine protein kinase. Poon, A.M., Kravtsov, G.M., Pang, S.F. J. Pineal Res. (2002) [Pubmed]
  19. Effects of melatonin on rat pial arteriolar diameter in vivo. Régrigny, O., Delagrange, P., Scalbert, E., Lartaud-Idjouadiene, I., Atkinson, J., Chillon, J.M. Br. J. Pharmacol. (1999) [Pubmed]
  20. Chronopharmacology of melatonin in mice to maximize the antitumor effect and minimize the rhythm disturbance effect. Akagi, T., Ushinohama, K., Ikesue, S., Yukawa, E., Higuchi, S., Hamase, K., Zaitsu, K., Ohdo, S. J. Pharmacol. Exp. Ther. (2004) [Pubmed]
  21. Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Dubocovich, M.L., Masana, M.I., Iacob, S., Sauri, D.M. Naunyn Schmiedebergs Arch. Pharmacol. (1997) [Pubmed]
  22. Antidepressant-like activity of the melatonin receptor antagonist, luzindole (N-0774), in the mouse behavioral despair test. Dubocovich, M.L., Mogilnicka, E., Areso, P.M. Eur. J. Pharmacol. (1990) [Pubmed]
  23. Disruption of mitochondrial respiration by melatonin in MCF-7 cells. Scott, A.E., Cosma, G.N., Frank, A.A., Wells, R.L., Gardner, H.S. Toxicol. Appl. Pharmacol. (2001) [Pubmed]
  24. Influence of melatonin on chicken lymphocytes in vitro: involvement of membrane receptors. Markowska, M., Mrozkowiak, A., Skwarlo-Sonta, K. Neuro Endocrinol. Lett. (2002) [Pubmed]
 
WikiGenes - Universities