The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Proestrus


Psychiatry related information on Proestrus

  • These results indicated that following the initial "priming" of central site(s) with low levels of circulating E2 during diestrus II, rapid elevations in ovarian estrogen secretion between 2300 hr of diestrus II and 0300 hr of proestrus facilitated the neural "trigger" of pituitary LH release during the critical period on proestrus [6].

High impact information on Proestrus

  • As expected, luciferase activity, monitored with a cooled charged coupled device camera, paralleled circulating estrogen levels in reproductive tissues and in liver, indicating that the peak transcriptional activity of the estrogen receptor occurred at proestrus [7].
  • Undoubtedly, the integration of these events is orchestrated by both ovarian steroids, E2 and P. Evidence accumulated in recent years has failed to affirm the perceived notion that E2 is an adequate peripheral signal for the timely, robust discharge of LHRH on proestrus [8].
  • A synthetic antagonist of luteinizing hormone-releasing hormone blocked ovulation in rats in a dose-dependent manner when given by gavage on the afternoon of proestrus [9].
  • Slices from female rats are not affected by estradiol, but slices from female rats in diestrus show increased excitability in response to testosterone whereas slices from females in proestrus show decreased excitability [10].
  • The numbers of receptors for gonadotropin-releasing hormone were positively correlated with concentrations of estradiol in serum; this pattern may be a necessary component of increased pituitary sensitivty to gonadotropin-releasing hormone observed during proestrus [11].

Chemical compound and disease context of Proestrus


Biological context of Proestrus


Anatomical context of Proestrus


Associations of Proestrus with chemical compounds


Gene context of Proestrus

  • Hypothalamic levels of GnRH mRNA were highest at 1700 h on proestrus, preceding the preovulatory LH surge [30].
  • No significant changes in the level of hypothalamic GnRH-R mRNA were detected, although fluctuations during the day of proestrus are evident [30].
  • In cycling female rat pituitaries, ERbeta messenger RNA (mRNA) levels fell 40% on the morning of proestrus and were suppressed by E or dihydrotestosterone in ovariectomized females [31].
  • In wild-type animals, MAT, STR-1, STR-2, STR-3, and gelatinase A were consistently expressed during the most active phases of the estrous cycle, estrus and proestrus [32].
  • An interaction between chronological age and reproductive status was found, with higher levels of NR1 mRNA seen in young animals in proestrus than in those in diestrus I (high and low estrogen levels, respectively) [33].

Analytical, diagnostic and therapeutic context of Proestrus


  1. Hormonal control of nuclear estradiol receptor content and the luminal epithelium in the uterus of the golden hamster. West, N.B., Norman, R.L., Sandow, B.A., Brenner, R.M. Endocrinology (1978) [Pubmed]
  2. In vivo effects of follicle-stimulating hormone-related synthetic peptides on the mouse estrous cycle. Grasso, P., Reichert, L.E. Endocrinology (1996) [Pubmed]
  3. Timing within the oestrous cycle modulates adrenergic suppression of NK activity and resistance to metastasis: possible clinical implications. Ben-Eliyahu, S., Shakhar, G., Shakhar, K., Melamed, R. Br. J. Cancer (2000) [Pubmed]
  4. The combined effects of dietary protein and fat on prolactin in female rats. Clinton, S.K., Li, P.H., Visek, W.J. J. Nutr. (1985) [Pubmed]
  5. Influence of gender and age on T-cell responses in a murine model of trauma-hemorrhage: differences between circulating and tissue-fixed cells. Schneider, C.P., Schwacha, M.G., Chaudry, I.H. J. Appl. Physiol. (2006) [Pubmed]
  6. Observations on facilitation of the preovulatory rise of LH by estrogen. Kalra, S.P. Endocrinology (1975) [Pubmed]
  7. In vivo imaging of transcriptionally active estrogen receptors. Ciana, P., Raviscioni, M., Mussi, P., Vegeto, E., Que, I., Parker, M.G., Lowik, C., Maggi, A. Nat. Med. (2003) [Pubmed]
  8. Mandatory neuropeptide-steroid signaling for the preovulatory luteinizing hormone-releasing hormone discharge. Kalra, S.P. Endocr. Rev. (1993) [Pubmed]
  9. Suppression of ovulation in the rat by an orally active antagonist of luteinizing hormone-releasing hormone. Nekola, M.B., Horvath, A., Ge, L.J., Coy, D.H., Schally, A.V. Science (1982) [Pubmed]
  10. Gonadal steroids: effects on excitability of hippocampal pyramidal cells. Teyler, T.J., Vardaris, R.M., Lewis, D., Rawitch, A.B. Science (1980) [Pubmed]
  11. Pituitary gonadotropin-releasing hormone receptors during the rat estrous cycle. Savoy-Moore, R.T., Schwartz, N.B., Duncan, J.A., Marshall, J.C. Science (1980) [Pubmed]
  12. The effect of blockade of kappa-opioid receptors in the medial preoptic area on the luteinizing hormone surge in the proestrous rat. Smith, M.J., Gallo, R.V. Brain Res. (1997) [Pubmed]
  13. Regional brain variations of tryptophan, monoamines, monoamine oxidase activity, plasma free and total tryptophan during the estrous cycle of the rat. Kueng, W., Wirz-Justice, A., Menzi, R., Chappuis-Arndt, E. Neuroendocrinology (1976) [Pubmed]
  14. Quantitative changes in the metabolism of 20alpha-hydroxy-4-pregnen-3-one by rat hypothalamus and pituitary during proestrus. Nowak, F.V., Nuti, K.M., Karavolas, H.J. Steroids (1976) [Pubmed]
  15. Effects of acute administration of ethanol on the rat adrenal cortex. Milovanović, T., Budec, M., Balint-Perić, L., Koko, V., Todorović, V. J. Stud. Alcohol (2003) [Pubmed]
  16. The role of endogenous opioids in the blockade of reproductive function in the rat following exposure to acute stress. Hulse, G.K., Coleman, G.J. Pharmacol. Biochem. Behav. (1983) [Pubmed]
  17. Functional role of estrogen in pituitary tumor pathogenesis. Heaney, A.P., Fernando, M., Melmed, S. J. Clin. Invest. (2002) [Pubmed]
  18. Evidence of high expression of peptidylglycine alpha-amidating monooxygenase in the rat uterus: estrogen regulation. El Meskini, R., Delfino, C., Boudouresque, F., Oliver, C., Martin, P.M., Ouafik L'H, n.u.l.l. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  19. Effects of cancer chemotherapeutic agents on endocrine organs and serum levels of estrogens, progesterone, prolactin, and luteinizing hormone. Kuo, E.Y., Esber, H.J., Taylor, D.J., Bogden, A.E. Cancer Res. (1975) [Pubmed]
  20. Gonadotropin-releasing hormone regulation of pituitary follistatin gene expression during the primary follicle-stimulating hormone surge. Bauer-Dantoin, A.C., Weiss, J., Jameson, J.L. Endocrinology (1996) [Pubmed]
  21. Oxytocin receptor gene expression in the rat uterus during pregnancy and the estrous cycle and in response to gonadal steroid treatment. Larcher, A., Neculcea, J., Breton, C., Arslan, A., Rozen, F., Russo, C., Zingg, H.H. Endocrinology (1995) [Pubmed]
  22. Estrous cycle modification of rat mammary gland DNA alkylation by N-methyl-N-nitrosourea. Ratko, T.A., Braun, R.J., Pezzuto, J.M., Beattie, C.W. Cancer Res. (1988) [Pubmed]
  23. Influence of the estrous cycle during carcinogen exposure on nitrosomethylurea-induced rat mammary carcinoma. Lindsey, W.F., Das Gupta, T.K., Beattie, C.W. Cancer Res. (1981) [Pubmed]
  24. Estrogen differentially regulates estrogen and nerve growth factor receptor mRNAs in adult sensory neurons. Sohrabji, F., Miranda, R.C., Toran-Allerand, C.D. J. Neurosci. (1994) [Pubmed]
  25. Modulation of Muc-1 mucin expression in the mouse uterus during the estrus cycle, early pregnancy and placentation. Braga, V.M., Gendler, S.J. J. Cell. Sci. (1993) [Pubmed]
  26. Brain gonadotropin releasing hormone receptors: localization and regulation. Jennes, L., Eyigor, O., Janovick, J.A., Conn, P.M. Recent Prog. Horm. Res. (1997) [Pubmed]
  27. Estrogen-directed synthesis of specific prostaglandins in uterus. Ham, E.A., Cirillo, V.J., Zanetti, M.E., Kuehl, F.A. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  28. Effect of alcohol on the proestrous surge of luteinizing hormone (LH) and the activation of LH-releasing hormone (LHRH) neurons in the female rat. Ogilvie, K.M., Rivier, C. J. Neurosci. (1997) [Pubmed]
  29. Absent or delayed preovulatory luteinizing hormone surge in experimental diabetes mellitus. Katayama, S., Brownscheidle, C.M., Wootten, V., Lee, J.B., Shimaoka, K. Diabetes (1984) [Pubmed]
  30. Differential gonadotropin-releasing hormone (GnRH) and GnRH receptor messenger ribonucleic acid expression patterns in different tissues of the female rat across the estrous cycle. Schirman-Hildesheim, T.D., Bar, T., Ben-Aroya, N., Koch, Y. Endocrinology (2005) [Pubmed]
  31. Differential expression and regulation of estrogen receptors (ERs) in rat pituitary and cell lines: estrogen decreases ERalpha protein and estrogen responsiveness. Schreihofer, D.A., Stoler, M.H., Shupnik, M.A. Endocrinology (2000) [Pubmed]
  32. Coordinate expression of matrix metalloproteinase family members in the uterus of normal, matrilysin-deficient, and stromelysin-1-deficient mice. Rudolph-Owen, L.A., Hulboy, D.L., Wilson, C.L., Mudgett, J., Matrisian, L.M. Endocrinology (1997) [Pubmed]
  33. N-methyl-D-aspartate receptor mRNA levels change during reproductive senescence in the hippocampus of female rats. Adams, M.M., Morrison, J.H., Gore, A.C. Exp. Neurol. (2001) [Pubmed]
  34. Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction. Nagano, M., Kelly, P.A. J. Biol. Chem. (1994) [Pubmed]
  35. Neuropeptide Y gene expression in the arcuate nucleus is increased during preovulatory luteinizing hormone surges. Bauer-Dantoin, A.C., Urban, J.H., Levine, J.E. Endocrinology (1992) [Pubmed]
  36. Intraventricular injection of follicle-stimulating hormone (FSH) during proestrus stimulates the rise in serum FSH on estrus in phenobarbital-treated hamsters through a central nervous system-dependent mechanism. Coutifaris, C., Chappel, S.C. Endocrinology (1982) [Pubmed]
  37. Antifertility effects of an aromatase inhibitor, 1,4,6-androstatriene-3, 17-dione. Brodie, A.M., Wu, J.T., Marsh, D.A., Brodie, H.J. Endocrinology (1979) [Pubmed]
WikiGenes - Universities