The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEBI:62006     (2R,3R,4R,5R)-4- [(2S,3R,4R,5S,6R)-5-[(2R...

Synonyms: AC1L3XPY, AR-1L8571, I14-90801, EINECS 252-118-9
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of maltopentaose

 

High impact information on maltopentaose

  • To further explain the mechanism of chloride activation, a crystal of wild-type PPA soaked with maltopentaose using a chloride-free buffer was analyzed by X-ray crystallography [5].
  • Amylose was prepared by enzymatic polymerization of alpha-D-glucose 1-phosphate dipotassium catalyzed by a phosphorylase using two kinds of the primers derived from maltopentaose, and then it was chemically bonded to silica gel to be used as a chiral stationary phase (CSP) in high-performance liquid chromatography [6].
  • The insight into substrate recognition derived from this mutagenesis study corroborates a binding model where maltopentaose fits into the phosphorylase b structure in a distorted form [7].
  • Analysis of the power density spectra using a previously proposed simple model (Benz, R., A. Schmid, and G. H. Vos-Scheperkeuter. 1987. J. Membr. Biol. 100: 12-29), allowed the evaluation of the on- and the off-rate constants for the maltopentaose binding to the binding site inside the LamB channels [8].
  • The kinetics of hydrolysis of two synthetic linear maltosaccharides, namely maltotriose and maltopentaose, were studied [9].
 

Chemical compound and disease context of maltopentaose

 

Biological context of maltopentaose

 

Associations of maltopentaose with other chemical compounds

 

Gene context of maltopentaose

  • The structural X-ray map of a pig pancreatic alpha-amylase crystal soaked (and flash-frozen) with a maltopentaose substrate showed a pattern of electron density corresponding to the binding of oligosaccharides at the active site and at three surface binding sites [17].
  • The resulting, purified 6HisMalR(SI) was shown to bind to two motifs within the S. lividans malR-malE intergenic region and to dissociate in the presence of maltopentaose [18].
  • An enzyme, 6-alpha-glucosyltransferase, which is involved in CTS synthesis from starch, from Bacillus globisporus C11 produced 4-O-alpha-glucosyl-CTS (4G-CTS) from a mixture containing CTS and maltopentaose [19].
 

Analytical, diagnostic and therapeutic context of maltopentaose

  • Stability constants for binding of maltopentaose to the mutant channels were measured using titration experiments with the carbohydrate [3].
  • HPLC analysis for identifying the anomers of products indicated that the AA hydrolyzed maltopentaose (G5) at the third glycoside bond predominantly, which differed from Taka-amylase A and the neutral alpha-amylase (NA) from the citric acid-koji [20].

References

  1. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose. Fujimoto, Z., Takase, K., Doui, N., Momma, M., Matsumoto, T., Mizuno, H. J. Mol. Biol. (1998) [Pubmed]
  2. Crystal structures of a mutant maltotetraose-forming exo-amylase cocrystallized with maltopentaose. Yoshioka, Y., Hasegawa, K., Matsuura, Y., Katsube, Y., Kubota, M. J. Mol. Biol. (1997) [Pubmed]
  3. Site-directed mutagenesis of the greasy slide aromatic residues within the LamB (maltoporin) channel of Escherichia coli: effect on ion and maltopentaose transport. Denker, K., Orlik, F., Schiffler, B., Benz, R. J. Mol. Biol. (2005) [Pubmed]
  4. Crystal structure of a catalytic site mutant of beta-amylase from Bacillus cereus var. mycoides cocrystallized with maltopentaose. Miyake, H., Kurisu, G., Kusunoki, M., Nishimura, S., Kitamura, S., Nitta, Y. Biochemistry (2003) [Pubmed]
  5. Molecular basis of the effects of chloride ion on the acid-base catalyst in the mechanism of pancreatic alpha-amylase. Qian, M., Ajandouz, e.l. .H., Payan, F., Nahoum, V. Biochemistry (2005) [Pubmed]
  6. Preparation of silica gel-bonded amylose through enzyme-catalyzed polymerization and chiral recognition ability of its phenylcarbamate derivative in HPLC. Enomoto, N., Furukawa, S., Ogasawara, Y., Akano, H., Kawamura, Y., Yashima, E., Okamoto, Y. Anal. Chem. (1996) [Pubmed]
  7. Mutational analysis of the oligosaccharide recognition site at the active site of Escherichia coli maltodextrin phosphorylase. Drueckes, P., Boeck, B., Palm, D., Schinzel, R. Biochemistry (1996) [Pubmed]
  8. Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. Nekolla, S., Andersen, C., Benz, R. Biophys. J. (1994) [Pubmed]
  9. Kinetic studies on glucoamylase of rabbit small intestine. Sivakami, S., Radhakrishnan, A.N. Biochem. J. (1976) [Pubmed]
  10. Cloning and nucleotide sequence of the maltopentaose-forming amylase gene from Pseudomonas sp. KO-8940. Shida, O., Takano, T., Takagi, H., Kadowaki, K., Kobayashi, S. Biosci. Biotechnol. Biochem. (1992) [Pubmed]
  11. Improvement of functional properties of whey protein isolate through glycation and phosphorylation by dry heating. Li, C.P., Enomoto, H., Ohki, S., Ohtomo, H., Aoki, T. J. Dairy Sci. (2005) [Pubmed]
  12. Substrate-dependent shift of optimum pH in porcine pancreatic alpha-amylase-catalyzed reactions. Ishikawa, K., Matsui, I., Honda, K., Nakatani, H. Biochemistry (1990) [Pubmed]
  13. The mechanism of porcine pancreatic alpha-amylase. Inhibition of maltopentaose hydrolysis by acarbose, maltose and maltotriose. Al Kazaz, M., Desseaux, V., Marchis-Mouren, G., Prodanov, E., Santimone, M. Eur. J. Biochem. (1998) [Pubmed]
  14. Controlled release of saccharides from matrix tablets. Mäki, R., Suihko, E., Korhonen, O., Pitkänen, H., Niemi, R., Lehtonen, M., Ketolainen, J. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V. (2006) [Pubmed]
  15. Mechanism of action and the substrate-dependent pH maximum shift of the alpha-amylase of Bacillus coagulans. Keating, L., Kelly, C., Fogarty, W. Carbohydr. Res. (1998) [Pubmed]
  16. Effect of pressure on the mechanism of hydrolysis of maltotetraose, maltopentaose, and maltohexose catalyzed by porcine pancreatic alpha-amylase. Matsumoto, T., Makimoto, S., Taniguchi, Y. Biochim. Biophys. Acta (1997) [Pubmed]
  17. Crystal structure of the pig pancreatic alpha-amylase complexed with malto-oligosaccharides. Payan, F., Qian, M. J. Protein Chem. (2003) [Pubmed]
  18. Synthesis of the Streptomyces lividans maltodextrin ABC transporter depends on the presence of the regulator MalR. Schlösser, A., Weber, A., Schrempf, H. FEMS Microbiol. Lett. (2001) [Pubmed]
  19. Enzymatic synthesis of glycosyl cyclic tetrasaccharide with 6-alpha-glucosyltransferase and 3-alpha-isomaltosyltransferase. Aga, H., Higashiyama, T., Watanabe, H., Sonoda, T., Yuen, R., Nishimoto, T., Kubota, M., Fukuda, S., Kurimoto, M., Tsujisaka, Y. J. Biosci. Bioeng. (2004) [Pubmed]
  20. N-terminal sequence of amino acids and some properties of an acid-stable alpha-amylase from citric acid-koji (Aspergillus usamii var.). Suganuma, T., Tahara, N., Kitahara, K., Nagahama, T., Inuzuka, K. Biosci. Biotechnol. Biochem. (1996) [Pubmed]
 
WikiGenes - Universities