The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEBI:28460     (2R,3R,4R,5R)-4- [(2S,3R,4R,5S,6R)-5-[(2R...

Synonyms: LS-174481, FT-0628138, AC1L3XN1, C24H42O21, I14-94374, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of maltotetraose

 

Psychiatry related information on maltotetraose

 

High impact information on maltotetraose

  • Mutants lacking amylomaltase (encoded by malQ), the major maltose utilizing enzyme, cannot grow on maltose, maltotriose, or maltotetraose, despite the fact that they contain an effective transport system and MalZ [7].
  • In the crystals soaked in alpha-cyclodextrin and maltoheptaose, a maltotetraose molecule is observed to bind in the active site [8].
  • The genetic structure of the locus reveals the presence of an upstream gene necessary for growth on maltotetraose medium (malA) [9].
  • The OE2 carboxyl of Glu 186 is below the plane of the penultimate glucose residue (Glc 2) of bound maltotetraose, 2.6 A from the oxygen atom of that ligand's penultimate alpha-1,4-glucosidic linkage [10].
  • All three were similar in amino acid composition, pH optimum, substrate specificity, calcium requirement, heat inactivation, and Km for maltotetraose substrate [11].
 

Chemical compound and disease context of maltotetraose

 

Biological context of maltotetraose

 

Anatomical context of maltotetraose

 

Associations of maltotetraose with other chemical compounds

 

Gene context of maltotetraose

  • The pores of the C. crescentus porins are slightly larger than those of E. coli K-12, since maltotetraose supported growth of the C. crescentus malA mutant but failed to support growth of the E. coli lamB mutant [24].
  • The malA mutant was unable to grow on maltodextrins larger than maltotetraose [24].
  • FhuA delta335-355 rendered cells sensitive to sodium dodecyl sulfate and supported diffusion of maltotetraose and maltopentaose in a lamB mutant lacking the maltodextrin-specific channel in the outer membrane [25].
  • Deletion of two C. crescentus genes homologous to the exbB exbD genes of Escherichia coli abolished [(14)C]maltodextrin binding and transport and growth on maltodextrins larger than maltotetraose [24].
  • Sera supplemented with porcine or bovine pancreatic amylase gave significantly lower values when assayed by methods using maltotetraose as substrate than when assayed by methods using maltopentaose or other oligosaccharides as substrate [26].
 

Analytical, diagnostic and therapeutic context of maltotetraose

  • Using X-ray crystallography, the structures were solved for TmCBM41 in an uncomplexed form and in complex with maltotetraose and 6(3)-alpha-d-glucosyl-maltotriose (GM3) [27].
  • In contrast, titrations with maltotetraose reveal three conformations: ligand-free, a low-affinity liganded state, and a high affinity liganded state [28].
  • Based on the electrophoretic homogeneity of the purified three bands and the enzymatic activities identified by a thin layer chromatography of the soluble starch hydrolysates, all the three bands were confirmed to be maltotetraose-forming amylase but in multiple forms [5].
  • Immobilization of alpha-amylase results in the formation of less polymerized products resulting in an apparent decrease in the number of transglycosylation reactions, for both maltotetraose and starch as substrates, when compared with free enzyme [29].
  • Crystallization and structural analysis of intact maltotetraose-forming exo-amylase from Pseudomonas stutzeri [30].

References

  1. Crystal structure of a maltotetraose-forming exo-amylase from Pseudomonas stutzeri. Morishita, Y., Hasegawa, K., Matsuura, Y., Katsube, Y., Kubota, M., Sakai, S. J. Mol. Biol. (1997) [Pubmed]
  2. Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. Mikami, B., Iwamoto, H., Malle, D., Yoon, H.J., Demirkan-Sarikaya, E., Mezaki, Y., Katsuya, Y. J. Mol. Biol. (2006) [Pubmed]
  3. Acarbose, a pseudooligosaccharide, is transported but not metabolized by the maltose-maltodextrin system of Escherichia coli. Brunkhorst, C., Andersen, C., Schneider, E. J. Bacteriol. (1999) [Pubmed]
  4. Isolation of maltotetraose from Streptomyces as an antibiotic against Erwinia carotovora. Kondo, H., Honke, T., Hasegawa, R., Shimoda, T., Nakamura, S. J. Antibiot. (1975) [Pubmed]
  5. Studies on multiple forms of maltotetraose-forming amylase from Alcaligenes sp. Zhu, J., Che, F., Yan, Z., Liang, G., Zhang, S. Chin. J. Biotechnol. (1997) [Pubmed]
  6. Haloalkaliphilic maltotriose-forming alpha-amylase from the archaebacterium Natronococcus sp. strain Ah-36. Kobayashi, T., Kanai, H., Hayashi, T., Akiba, T., Akaboshi, R., Horikoshi, K. J. Bacteriol. (1992) [Pubmed]
  7. The MalT-dependent and malZ-encoded maltodextrin glucosidase of Escherichia coli can be converted into a dextrinyltransferase by a single mutation. Peist, R., Schneider-Fresenius, C., Boos, W. J. Biol. Chem. (1996) [Pubmed]
  8. Crystallographic studies of the interaction of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 with natural substrates and products. Knegtel, R.M., Strokopytov, B., Penninga, D., Faber, O.G., Rozeboom, H.J., Kalk, K.H., Dijkhuizen, L., Dijkstra, B.W. J. Biol. Chem. (1995) [Pubmed]
  9. Characterization of the Streptococcus pneumoniae maltosaccharide regulator MalR, a member of the LacI-GalR family of repressors displaying distinctive genetic features. Puyet, A., Ibáñez, A.M., Espinosa, M. J. Biol. Chem. (1993) [Pubmed]
  10. Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis. Mikami, B., Degano, M., Hehre, E.J., Sacchettini, J.C. Biochemistry (1994) [Pubmed]
  11. Amylase from human serous ovarian tumors: purification and characterization. Zakowski, J.J., Gregory, M.R., Bruns, D.E. Clin. Chem. (1984) [Pubmed]
  12. Purification and some properties of a novel maltohexaose-producing exo-amylase from Aerobacter aerogenes. Kainuma, K., Wako, K., Kobayashi, S., Nogami, A., Suzuki, S. Biochim. Biophys. Acta (1975) [Pubmed]
  13. Hydrolysis of maltotetraose by human pancreatic alpha-amylase, with liquid-chromatographic determination of the products. Lalégerie, P., Pourci, M.L., Bailly, M. Clin. Chem. (1982) [Pubmed]
  14. Cloning and nucleotide sequence of the gene (amyP) for maltotetraose-forming amylase from Pseudomonas stutzeri MO-19. Fujita, M., Torigoe, K., Nakada, T., Tsusaki, K., Kubota, M., Sakai, S., Tsujisaka, Y. J. Bacteriol. (1989) [Pubmed]
  15. Breast-milk amylase activity in English and Gambian mothers: effects of prolonged lactation, maternal parity, and individual variations. Dewit, O., Dibba, B., Prentice, A. Pediatr. Res. (1990) [Pubmed]
  16. In vivo expression of the Pseudomonas stutzeri maltotetraose-forming amylase gene (amyP). Fujita, M., Futai, M., Amemura, A. J. Bacteriol. (1990) [Pubmed]
  17. Studies of the inhibition by malto-oligosaccharides of the cyclisation reaction catalysed by the cyclodextrin glycosyltransferase from Klebsiella pneumoniae M 5 al with glycogen. Bender, H. Carbohydr. Res. (1985) [Pubmed]
  18. Neutral maltase of human granulocytes: localization on the extracytoplasmic side of the plasma membrane and some properties. Stio, M., Vanni, P., Ferrini, P.R., Giachetti, E., Bosi, A., Pinzauti, G. Biochem. Med. Metab. Biol. (1988) [Pubmed]
  19. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch. Cotta, M.A. Appl. Environ. Microbiol. (1992) [Pubmed]
  20. Maltitol and maltobionate act differently on maltose- and maltooligosaccharide hydrolysis by human small intestinal glucoamylase-maltase indicating two different enzyme binding modes. Günther, S., Wehrspaun, A., Heymann, H. Arch. Biochem. Biophys. (1996) [Pubmed]
  21. Purification and characterisation of a malto-oligosaccharide-forming amylase active at high pH from Bacillus clausii BT-21. Duedahl-Olesen, L., Kragh, K.M., Zimmermann, W. Carbohydr. Res. (2000) [Pubmed]
  22. Crystal structure of alkalophilic asparagine 233-replaced cyclodextrin glucanotransferase complexed with an inhibitor, acarbose, at 2.0 A resolution. Ishii, N., Haga, K., Yamane, K., Harata, K. J. Biochem. (2000) [Pubmed]
  23. Study on the interaction between soybean beta-amylase and substrate by the stopped-flow method. Kunikata, T., Yamano, H., Nagamura, T., Nitta, Y. J. Biochem. (1992) [Pubmed]
  24. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. Neugebauer, H., Herrmann, C., Kammer, W., Schwarz, G., Nordheim, A., Braun, V. J. Bacteriol. (2005) [Pubmed]
  25. Properties of the FhuA channel in the Escherichia coli outer membrane after deletion of FhuA portions within and outside the predicted gating loop. Killmann, H., Benz, R., Braun, V. J. Bacteriol. (1996) [Pubmed]
  26. Activity of human and nonhuman amylases on different substrates used in enzymatic kinetic assay methods--a pitfall in interlaboratory quality control. Lee, V.W., Willis, C. Am. J. Clin. Pathol. (1982) [Pubmed]
  27. The Structural Basis of alpha-Glucan Recognition by a Family 41 Carbohydrate-binding Module from Thermotoga maritima. van Bueren, A.L., Boraston, A.B. J. Mol. Biol. (2007) [Pubmed]
  28. UV difference spectroscopy of ligand binding to maltose-binding protein. Gehring, K., Bao, K., Nikaido, H. FEBS Lett. (1992) [Pubmed]
  29. Effect of diffusional resistances on the action pattern of immobilized alpha-amylase. Siso, M.I., Graber, M., Condoret, J.S., Combes, D. Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986) (1990) [Pubmed]
  30. Crystallization and structural analysis of intact maltotetraose-forming exo-amylase from Pseudomonas stutzeri. Mezaki, Y., Katsuya, Y., Kubota, M., Matsuura, Y. Biosci. Biotechnol. Biochem. (2001) [Pubmed]
 
WikiGenes - Universities