The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

phosphoenolpyruvate     2-phosphonooxyprop-2-enoate

Synonyms: P-enol-pyr, AG-G-92907, CHEBI:18021, AC1LCW46, CTK5D8854, ...
This record was replaced with 1005.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of phosphoenolpyruvate

 

High impact information on phosphoenolpyruvate

 

Chemical compound and disease context of phosphoenolpyruvate

 

Biological context of phosphoenolpyruvate

  • IGF-1 receptor phosphorylation and coimmunoprecipitation of phosphatidylinositol3-kinase by antiphosphotyrosine antibodies was also observed in liver, and was associated with a decrease in mRNA levels of the key gluconeogenetic enzyme phosphoenolpyruvate carboxykinase [16].
  • Work on the phosphoenolpyruvate carboxykinase promoter using transgenic mice has been particularly informative: the cis-acting elements involved in hormonal regulation, tissue specificity and developmental inhibition of gene expression have been identified and their function in vivo examined [17].
  • Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system [18].
  • Glucagon and its second messenger, cAMP, are known to rapidly block expression of the L-type pyruvate kinase gene and to stimulate expression of phosphoenolpyruvate (PEP) carboxykinase gene in the liver in vivo [19].
  • In the absence of substrate this antitermination is prevented by the action of the product of gene bglF (the second gene of the operon), which encodes the beta-glucoside-specific transport protein (enzymeIIBgl of the phosphoenolpyruvate-dependent phosphotransferase system, PTS) resulting in repression of the operon [20].
 

Anatomical context of phosphoenolpyruvate

 

Associations of phosphoenolpyruvate with other chemical compounds

 

Gene context of phosphoenolpyruvate

 

Analytical, diagnostic and therapeutic context of phosphoenolpyruvate

References

  1. Conversion of allosteric inhibition to activation in phosphofructokinase by protein engineering. Lau, F.T., Fersht, A.R. Nature (1987) [Pubmed]
  2. Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor. Lebioda, L., Stec, B. Nature (1988) [Pubmed]
  3. The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Galinier, A., Haiech, J., Kilhoffer, M.C., Jaquinod, M., Stülke, J., Deutscher, J., Martin-Verstraete, I. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  4. Kinetic characterization and regulation of phosphoenolpyruvate-dependent methyl alpha-D-glucopyranoside transport by Salmonella typhimurium membrane vesicles. Liu, K.D., Roseman, S. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  5. Reevaluation of the accepted allosteric mechanism of phosphofructokinase from Bacillus stearothermophilus. Kimmel, J.L., Reinhart, G.D. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  6. Active-centre torsion-angle strain revealed in 1.6 A-resolution structure of histidine-containing phosphocarrier protein. Jia, Z., Vandonselaar, M., Quail, J.W., Delbaere, L.T. Nature (1993) [Pubmed]
  7. Impaired energy homeostasis in C/EBP alpha knockout mice. Wang, N.D., Finegold, M.J., Bradley, A., Ou, C.N., Abdelsayed, S.V., Wilde, M.D., Taylor, L.R., Wilson, D.R., Darlington, G.J. Science (1995) [Pubmed]
  8. Comparative genomic analyses of the bacterial phosphotransferase system. Barabote, R.D., Saier, M.H. Microbiol. Mol. Biol. Rev. (2005) [Pubmed]
  9. Hydrazine sulfate protects D-galactosamine-sensitized mice against endotoxin and tumor necrosis factor/cachectin lethality: evidence of a role for the pituitary. Silverstein, R., Turley, B.R., Christoffersen, C.A., Johnson, D.C., Morrison, D.C. J. Exp. Med. (1991) [Pubmed]
  10. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. Taniguchi, C.M., Ueki, K., Kahn, R. J. Clin. Invest. (2005) [Pubmed]
  11. Regulation of beta-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism. Reizer, J., Panos, C. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  12. Regulated high-level expression of the mannitol permease of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Escherichia coli. van Weeghel, R.P., Keck, W., Robillard, G.T. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  13. 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Kotelevtsev, Y., Holmes, M.C., Burchell, A., Houston, P.M., Schmoll, D., Jamieson, P., Best, R., Brown, R., Edwards, C.R., Seckl, J.R., Mullins, J.J. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  14. Fructose-specific phosphoenolpyruvate dependent phosphotransferase system of Escherichia coli: its alterations and adenylate cyclase activity. Gershanovitch, V.N., Bolshakova, T.N., Molchanova, M.L., Umyarov, A.M., Dobrynina OYu, n.u.l.l., Grigorenko YuA, n.u.l.l., Erlagaeva, R.S. FEMS Microbiol. Rev. (1989) [Pubmed]
  15. Abnormal phosphoenolpyruvate transport in erythrocytes of hereditary spherocytosis. Ideguchi, H., Hamasaki, N., Ikehara, Y. Blood (1981) [Pubmed]
  16. Hypoglycemic effect of insulin-like growth factor-1 in mice lacking insulin receptors. Di Cola, G., Cool, M.H., Accili, D. J. Clin. Invest. (1997) [Pubmed]
  17. Metabolic control of gene expression: in vivo studies with transgenic mice. McGrane, M.M., Yun, J.S., Patel, Y.M., Hanson, R.W. Trends Biochem. Sci. (1992) [Pubmed]
  18. Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system. Cordaro, C. Annu. Rev. Genet. (1976) [Pubmed]
  19. In vivo regulation of glycolytic and gluconeogenic enzyme gene expression in newborn rat liver. Lyonnet, S., Coupé, C., Girard, J., Kahn, A., Munnich, A. J. Clin. Invest. (1988) [Pubmed]
  20. Regulation of the bgl operon of Escherichia coli by transcriptional antitermination. Schnetz, K., Rak, B. EMBO J. (1988) [Pubmed]
  21. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. Streatfield, S.J., Weber, A., Kinsman, E.A., Häusler, R.E., Li, J., Post-Beittenmiller, D., Kaiser, W.M., Pyke, K.A., Flügge, U.I., Chory, J. Plant Cell (1999) [Pubmed]
  22. A new pyruvate kinase variant (PK Osaka) demonstrated by partial purification and condensation. Shinohara, K., Miwa, S., Nakashima, K., Oda, E., Kageoka, T. Am. J. Hum. Genet. (1976) [Pubmed]
  23. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Rhee, J., Inoue, Y., Yoon, J.C., Puigserver, P., Fan, M., Gonzalez, F.J., Spiegelman, B.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  24. A mutation in the peroxisome proliferator-activated receptor gamma-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. Olswang, Y., Cohen, H., Papo, O., Cassuto, H., Croniger, C.M., Hakimi, P., Tilghman, S.M., Hanson, R.W., Reshef, L. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  25. Regulation of bacterial sugar-H+ symport by phosphoenolpyruvate-dependent enzyme I/HPr-mediated phosphorylation. Poolman, B., Knol, J., Mollet, B., Nieuwenhuis, B., Sulter, G. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  26. Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR. Bächler, C., Schneider, P., Bähler, P., Lustig, A., Erni, B. EMBO J. (2005) [Pubmed]
  27. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Sauer, U., Hatzimanikatis, V., Bailey, J.E., Hochuli, M., Szyperski, T., Wüthrich, K. Nat. Biotechnol. (1997) [Pubmed]
  28. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Yanagisawa, S., Sheen, J. Plant Cell (1998) [Pubmed]
  29. Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Penfield, S., Rylott, E.L., Gilday, A.D., Graham, S., Larson, T.R., Graham, I.A. Plant Cell (2004) [Pubmed]
  30. Glucose sensing in pancreatic islet beta cells: the key role of glucokinase and the glycolytic intermediates. German, M.S. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  31. CAT5, a new gene necessary for derepression of gluconeogenic enzymes in Saccharomyces cerevisiae. Proft, M., Kötter, P., Hedges, D., Bojunga, N., Entian, K.D. EMBO J. (1995) [Pubmed]
  32. Futile cycles in Saccharomyces cerevisiae strains expressing the gluconeogenic enzymes during growth on glucose. Navas, M.A., Cerdán, S., Gancedo, J.M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  33. Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Comi, G.P., Fortunato, F., Lucchiari, S., Bordoni, A., Prelle, A., Jann, S., Keller, A., Ciscato, P., Galbiati, S., Chiveri, L., Torrente, Y., Scarlato, G., Bresolin, N. Ann. Neurol. (2001) [Pubmed]
  34. The N-terminal domain of Escherichia coli enzyme I of the phosphoenolpyruvate/glycose phosphotransferase system: molecular cloning and characterization. Chauvin, F., Fomenkov, A., Johnson, C.R., Roseman, S. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  35. Phosphate-starvation response in plant cells: de novo synthesis and degradation of acid phosphatases. Duff, S.M., Plaxton, W.C., Lefebvre, D.D. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  36. Metabolic actions of insulin-like growth factor-I in cultured hepatocytes from adult rats. Hartmann, H., Schmitz, F., Christ, B., Jungermann, K., Creutzfeldt, W. Hepatology (1990) [Pubmed]
  37. Immunochemical studies on catabolite inactivation of phosphoenolpyruvate carboxykinase in Saccharomyces cerevisiae. Müller, M., Müller, H., Holzer, H. J. Biol. Chem. (1981) [Pubmed]
  38. The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. Sutrina, S.L., Reddy, P., Saier, M.H., Reizer, J. J. Biol. Chem. (1990) [Pubmed]
 
WikiGenes - Universities