The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

KBioGR_000165     (5S)-5-hydroperoxyicosa- 6,8,11,14...

Synonyms: KBioSS_000165, CBiol_001779, CTK2H8933, KBio2_000165, KBio2_002733, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of C05356


High impact information on C05356

  • Finally, we have demonstrated that TNF stimulates production of lipoxygenase metabolites in TA1 cells and that one of these, 5-HPETE, induces c-fos, but not c-jun [2].
  • Here, we report that CLP can up-regulate and modulate 5LO activity [formation of 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HPETE)], 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HETE), and 5(S)-trans-5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid (LTA(4)) in vitro [3].
  • The apparent Km of 5-HPETE was determined to be approximately 7 microM for microsomal GST-II and 21 microM for microsomal GST-III [4].
  • This compound, 14d (2-[2-[1-(4-chlorobenzyl)-4-methyl-6-[(5-phenylpyridin-2-yl)methox y]- 4,5-dihydro-1H-thiopyrano[2,3,4-cd]indol-2-yl]ethoxy]-butanoic acid, L-699,333), inhibits 5-HPETE production by human 5-LO and LTB4 biosynthesis by human PMN leukocytes and human whole blood (IC50s of 22 nM, 7 nM and 3.8 microM, respectively) [5].
  • We found that 5,6-EET, 20-HETE, and 5-HPETE each activated distinct Ca(2+)-permeant nonselective cation channels (NSCCs) in primary B cells [6].

Biological context of C05356


Anatomical context of C05356


Associations of C05356 with other chemical compounds

  • In conclusion, an effective modulator of the AA cascade for the treatment of asthma and other inflammatory diseases may require 5-LO inhibitory activity as well as LTD4 antagonism in order to limit the effects of LTB4, LTD4, and 5-HPETE [16].
  • The inhibitory effects of 12-lipoxygenase products were not exhibited by the 5-lipoxygenase-derived products, leukotriene B4 and 5-HPETE [17].
  • The results indicate that FMLP-evoked O-2 may be enhanced by 10(-8)-10(-7)M levels of a number of lipids, in addition to LTB4, including 5-HPETE, 5-HETE, 5,15-DiHPETE and by higher levels of other 15-series lipoxygenase products and arachidonic acid [18].
  • Although the hydroperoxy derivative 5-HPETE also inhibited the response to LTB4, in the relatively narrow concentration range of 1-4 microM it stimulated FMLP-induced aggregation [13].
  • Specific metabolites of each pathway, i.e. PGF2 alpha and 5-HPETE, are able to transcend the block and restore collagenase production, invasiveness in vitro and metastatic activity in vivo [19].

Gene context of C05356

  • The yield of 5-HPETE was considerably greater when the mu Bondapak C18 column was used [20].

Analytical, diagnostic and therapeutic context of C05356


  1. Can dietary selenium reduce leukotriene production? McCarty, M. Med. Hypotheses (1984) [Pubmed]
  2. TNF induces c-fos via a novel pathway requiring conversion of arachidonic acid to a lipoxygenase metabolite. Haliday, E.M., Ramesha, C.S., Ringold, G. EMBO J. (1991) [Pubmed]
  3. Coactosin-like protein supports 5-lipoxygenase enzyme activity and up-regulates leukotriene A4 production. Rakonjac, M., Fischer, L., Provost, P., Werz, O., Steinhilber, D., Samuelsson, B., Rådmark, O. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  4. Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. Jakobsson, P.J., Mancini, J.A., Riendeau, D., Ford-Hutchinson, A.W. J. Biol. Chem. (1997) [Pubmed]
  5. Thiopyrano[2,3,4-cd]indoles as 5-lipoxygenase inhibitors: synthesis, biological profile, and resolution of 2-[2-[1-(4-chlorobenzyl)-4-methyl-6-[(5-phenylpyridin-2-yl)methoxy]-4,5 -dihydro-1H-thiopyrano[2,3,4-cd]indol-2-yl]ethoxy]butanoic acid. Hutchinson, J.H., Riendeau, D., Brideau, C., Chan, C., Falgueyret, J.P., Guay, J., Jones, T.R., Lépine, C., Macdonald, D., McFarlane, C.S. J. Med. Chem. (1994) [Pubmed]
  6. Multiple eicosanoid-activated nonselective cation channels regulate B-lymphocyte adhesion to integrin ligands. Liu, X., Zhu, P., Freedman, B.D. Am. J. Physiol., Cell Physiol. (2006) [Pubmed]
  7. Endogenously generated 5-hydroperoxyeicosatetraenoic acid is the preferred substrate for human leukocyte leukotriene A4 synthase activity. Puustinen, T., Scheffer, M.M., Samuelsson, B. FEBS Lett. (1987) [Pubmed]
  8. Complement receptor enhancement and chemotaxis of human neutrophils and eosinophils by leukotrienes and other lipoxygenase products. Nagy, L., Lee, T.H., Goetzl, E.J., Pickett, W.C., Kay, A.B. Clin. Exp. Immunol. (1982) [Pubmed]
  9. 5-HPETE is a potent inhibitor of neuronal Na+, K(+)-ATPase activity. Foley, T.D. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  10. Biochemistry of the lipoxygenase pathways in neutrophils. Borgeat, P. Can. J. Physiol. Pharmacol. (1989) [Pubmed]
  11. Kinetic studies on arachidonate 5-lipoxygenase from rat basophilic leukemia cells. Haurand, M., Flohé, L. Biol. Chem. Hoppe-Seyler (1988) [Pubmed]
  12. Localization of 5-lipoxygenase within human polymorphonuclear leukocytes. Stüning, M., Raulf, M., König, W. Biochem. Pharmacol. (1985) [Pubmed]
  13. Differential effects of lipoxygenase products on FMLP and LTB4 evoked neutrophil aggregation. Beckman, J.K., Gay, J.C., Brash, A.R., Lukens, J.N., Oates, J.A. Lipids (1985) [Pubmed]
  14. The 5-lipoxygenase products can modulate the synthesis of platelet-activating factor (alkyl-acetyl GPC) in Ca-ionophore A23187-stimulated rat peritoneal macrophages. Saito, H., Hirai, A., Tamura, Y., Yoshida, S. Prostaglandins, leukotrienes, and medicine. (1985) [Pubmed]
  15. Human 5-lipoxygenase associates with phosphatidylcholine liposomes and modulates LTA4 synthetase activity. Noguchi, M., Miyano, M., Matsumoto, T., Noma, M. Biochim. Biophys. Acta (1994) [Pubmed]
  16. 5-lipoxygenase: properties, pharmacology, and the quinolinyl(bridged)aryl class of inhibitors. Musser, J.H., Kreft, A.F. J. Med. Chem. (1992) [Pubmed]
  17. 12-lipoxygenase products are potent inhibitors of prostacyclin-induced renin release. Antonipillai, I. Proc. Soc. Exp. Biol. Med. (1990) [Pubmed]
  18. Stimulation by lipoxygenase products of superoxide anion production in FMLP-treated neutrophils. Beckman, J.K., Gay, J.C., Brash, A.R., Lukens, J.N., Oates, J.A. Lipids (1985) [Pubmed]
  19. Identification of arachidonic acid pathways required for the invasive and metastatic activity of malignant tumor cells. Reich, R., Martin, G.R. Prostaglandins (1996) [Pubmed]
  20. Preparation and characterization of hydroperoxy-eicosatetraenoic acids (HPETEs). Boeynaems, J.M., Oates, J.A., Hubbard, W.C. Prostaglandins (1980) [Pubmed]
  21. Tenidap inhibits 5-lipoxygenase product formation in vitro, but this activity is not observed in three animal models. Carty, T.J., Sweeney, F.J., Griffiths, R.J., Eskra, J.D., Ernest, M.J., Pillar, J.S., Cheng, J.D., Loose, L.D., Joseph, P.A., Pazoles, P.P., Moore, P.F., Nagahisa, A., Murase, S., Kadin, S.B. Inflamm. Res. (1997) [Pubmed]
WikiGenes - Universities