The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AG-E-60257     [hydroxy-[[3-hydroxy-5-(5- methyl-2,4-dioxo...

Synonyms: CTK8G3326, AC1L19SE
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of dTDP-D-glucose

 

High impact information on dTDP-D-glucose

 

Chemical compound and disease context of dTDP-D-glucose

  • An Escherichia coli rmIC mutant was constructed and a crude enzyme extract prepared from it did not produce dTDP-4-keto-rhamnose, in contrast to a crude enzyme extract prepared from a wild-type E. coli strain where small amounts of this intermediate were found after incubation with dTDP-glucose in the absence of NADPH [10].
 

Biological context of dTDP-D-glucose

 

Associations of dTDP-D-glucose with other chemical compounds

 

Gene context of dTDP-D-glucose

  • The amino acid sequence encoded by ORF3 (GraD) is 51.4% identical (69.9% similar) to that of StrD, a dTDP-glucose synthase from Streptomyces griseus [13].
  • In addition, we have cloned a 45-kb region of DNA from Streptomyces spectabilis ATCC27741, a spectinomycin producer which contained the dTDP-glucose synthase and dTDP-glucose 4,6-dehydratase genes named spcD and spcE, respectively [14].
 

Analytical, diagnostic and therapeutic context of dTDP-D-glucose

  • Specifically designed PCR primers were applied to amplify a segment of dTDP-glucose synthase gene from six actinomycete strains [14].

References

  1. Stereochemistry of the dTDP-glucose oxidoreductase reaction. Snipes, C.E., Brillinger, G.U., Sellers, L., Mascaro, L., Floss, H.G. J. Biol. Chem. (1977) [Pubmed]
  2. High resolution X-ray structure of dTDP-glucose 4,6-dehydratase from Streptomyces venezuelae. Allard, S.T., Cleland, W.W., Holden, H.M. J. Biol. Chem. (2004) [Pubmed]
  3. Dehydration is catalyzed by glutamate-136 and aspartic acid-135 active site residues in Escherichia coli dTDP-glucose 4,6-dehydratase. Gross, J.W., Hegeman, A.D., Gerratana, B., Frey, P.A. Biochemistry (2001) [Pubmed]
  4. Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Ma, Y., Stern, R.J., Scherman, M.S., Vissa, V.D., Yan, W., Jones, V.C., Zhang, F., Franzblau, S.G., Lewis, W.H., McNeil, M.R. Antimicrob. Agents Chemother. (2001) [Pubmed]
  5. Kinetic and crystallographic analyses support a sequential-ordered bi bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase. Zuccotti, S., Zanardi, D., Rosano, C., Sturla, L., Tonetti, M., Bolognesi, M. J. Mol. Biol. (2001) [Pubmed]
  6. Concerted and stepwise dehydration mechanisms observed in wild-type and mutated Escherichia coli dTDP-glucose 4,6-dehydratase. Hegeman, A.D., Gross, J.W., Frey, P.A. Biochemistry (2002) [Pubmed]
  7. Mechanistic roles of Thr134, Tyr160, and Lys 164 in the reaction catalyzed by dTDP-glucose 4,6-dehydratase. Gerratana, B., Cleland, W.W., Frey, P.A. Biochemistry (2001) [Pubmed]
  8. Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis. D'Antuono, A.L., Casabuono, A., Couto, A., Ugalde, R.A., Lepek, V.C. Mol. Plant Microbe Interact. (2005) [Pubmed]
  9. Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. Ahmed, I.H., Manning, G., Wassenaar, T.M., Cawthraw, S., Newell, D.G. Microbiology (Reading, Engl.) (2002) [Pubmed]
  10. Conversion of dTDP-4-keto-6-deoxyglucose to free dTDP-4-keto-rhamnose by the rmIC gene products of Escherichia coli and Mycobacterium tuberculosis. Stern, R.J., Lee, T.Y., Lee, T.J., Yan, W., Scherman, M.S., Vissa, V.D., Kim, S.K., Wanner, B.L., McNeil, M.R. Microbiology (Reading, Engl.) (1999) [Pubmed]
  11. Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57. Gaisser, S., Trefzer, A., Stockert, S., Kirschning, A., Bechthold, A. J. Bacteriol. (1997) [Pubmed]
  12. Genetics of streptomycin production in Streptomyces griseus: molecular structure and putative function of genes strELMB2N. Pissowotzki, K., Mansouri, K., Piepersberg, W. Mol. Gen. Genet. (1991) [Pubmed]
  13. Identification of Streptomyces violaceoruber Tü22 genes involved in the biosynthesis of granaticin. Bechthold, A., Sohng, J.K., Smith, T.M., Chu, X., Floss, H.G. Mol. Gen. Genet. (1995) [Pubmed]
  14. An efficient approach for cloning the dNDP-glucose synthase gene from actinomycetes and its application in Streptomyces spectabilis, a spectinomycin producer. Hyun, C., Kim, S.S., Sohng, J.K., Hahn, J., Kim, J., Suh, J. FEMS Microbiol. Lett. (2000) [Pubmed]
  15. Isolation and characterization of bluensomycin biosynthetic genes from Streptomyces bluensis. Jung, Y.G., Kang, S.H., Hyun, C.G., Yang, Y.Y., Kang, C.M., Suh, J.W. FEMS Microbiol. Lett. (2003) [Pubmed]
 
WikiGenes - Universities