The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SEC17  -  Sec17p

Saccharomyces cerevisiae S288c

Synonyms: Alpha-soluble NSF attachment protein, N-ethylmaleimide-sensitive factor attachment protein alpha, SNAP-alpha, Vesicular-fusion protein SEC17, YBL0505, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on SEC17


Biological context of SEC17


Anatomical context of SEC17


Associations of SEC17 with chemical compounds

  • Homotypic vacuole fusion in yeast requires Sec18p (N-ethylmaleimide-sensitive fusion protein [NSF]), Sec17p (soluble NSF attachment protein [alpha-SNAP]), and typical vesicle (v) and target membrane (t) SNAP receptors (SNAREs) [11].

Physical interactions of SEC17


Other interactions of SEC17

  • The vacuole v-t-SNARE complex is disassembled by Sec17p/alpha-SNAP and Sec18p/NSF prior to vacuole docking and fusion [12].
  • We identified the genes mutated in three of the rns mutants, rns1, rns2, and rns3, as DSL1, UMP1, and SEC17, respectively [13].
  • Deletions in either the helix 1 or helix 2 segments result in a complete loss in the ability of the protein to confer secretion competence to snc cells and to interact genetically with components of the proposed fusion complex: the Sec9 and Sso2 t-SNAREs and the Sec17 alpha-SNAP homolog [14].
  • We report here the first biochemical characterization of a nonneuronal SNARE complex using recombinant forms of the yeast exocytic SNARE proteins Snc1, Sso1, and Sec9 and the yeast alpha-SNAP homolog, Sec17 [15].
  • Sec17 also shares structural features with HEAT and clathrin heavy chain repeats [16].

Analytical, diagnostic and therapeutic context of SEC17

  • Immunoblotting indicates that Sec17p fractionates as a peripheral membrane protein and is mostly soluble when overexpressed, suggesting the presence of a saturable membrane receptor for Sec17p [5].


  1. Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Wickner, W., Haas, A. Annu. Rev. Biochem. (2000) [Pubmed]
  2. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Mayer, A., Wickner, W., Haas, A. Cell (1996) [Pubmed]
  3. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Clary, D.O., Griff, I.C., Rothman, J.E. Cell (1990) [Pubmed]
  4. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nichols, B.J., Ungermann, C., Pelham, H.R., Wickner, W.T., Haas, A. Nature (1997) [Pubmed]
  5. The yeast SEC17 gene product is functionally equivalent to mammalian alpha-SNAP protein. Griff, I.C., Schekman, R., Rothman, J.E., Kaiser, C.A. J. Biol. Chem. (1992) [Pubmed]
  6. Sequencing and functional analysis of a 32,560 bp segment on the left arm of yeast chromosome II. Identification of 26 open reading frames, including the KIP1 and SEC17 genes. Scherens, B., el Bakkoury, M., Vierendeels, F., Dubois, E., Messenguy, F. Yeast (1993) [Pubmed]
  7. Isolation of Pichia pastoris genes involved in ER-to-Golgi transport. Payne, W.E., Kaiser, C.A., Bevis, B.J., Soderholm, J., Fu, D., Sears, I.B., Glick, B.S. Yeast (2000) [Pubmed]
  8. Biochemical analysis of the Saccharomyces cerevisiae SEC18 gene product: implications for the molecular mechanism of membrane fusion. Steel, G.J., Laude, A.J., Boojawan, A., Harvey, D.J., Morgan, A. Biochemistry (1999) [Pubmed]
  9. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. Thorngren, N., Collins, K.M., Fratti, R.A., Wickner, W., Merz, A.J. EMBO J. (2004) [Pubmed]
  10. The karyogamy gene KAR2 and novel proteins are required for ER-membrane fusion. Latterich, M., Schekman, R. Cell (1994) [Pubmed]
  11. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. Ungermann, C., Nichols, B.J., Pelham, H.R., Wickner, W. J. Cell Biol. (1998) [Pubmed]
  12. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. Ungermann, C., Wickner, W. EMBO J. (1998) [Pubmed]
  13. Isolation of Saccharomyces cerevisiae RNase T1 hypersensitive (rns) mutants and genetic analysis of the RNS1/DSL1 gene. Ishikawa, T., Unno, K., Nonaka, G., Nakajima, H., Kitamoto, K. J. Gen. Appl. Microbiol. (2005) [Pubmed]
  14. Conserved alpha-helical segments on yeast homologs of the synaptobrevin/VAMP family of v-SNAREs mediate exocytic function. Gerst, J.E. J. Biol. Chem. (1997) [Pubmed]
  15. Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9. Rossi, G., Salminen, A., Rice, L.M., Brünger, A.T., Brennwald, P. J. Biol. Chem. (1997) [Pubmed]
  16. Crystal structure of the vesicular transport protein Sec17: implications for SNAP function in SNARE complex disassembly. Rice, L.M., Brunger, A.T. Mol. Cell (1999) [Pubmed]
WikiGenes - Universities