The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SEC18  -  AAA family ATPase SEC18

Saccharomyces cerevisiae S288c

Synonyms: Vesicular-fusion protein SEC18, YBR0736, YBR080C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SEC18

 

High impact information on SEC18

 

Biological context of SEC18

 

Anatomical context of SEC18

 

Associations of SEC18 with chemical compounds

 

Physical interactions of SEC18

  • Vam7p is a constituent of the vacuole SNARE complex and is released from this complex by the Sec17p/Sec18p/ATP-mediated priming of the vacuoles [18].
  • Ordering experiments using the dilution resistant intermediate and reversible Sec23p complex inhibition indicate Sec18p action is required before LMA1 function [13].
 

Regulatory relationships of SEC18

  • Strikingly, palmitoylation of Vac8p is blocked by the addition of antibodies to Sec18p (yeast NSF) only [19].
 

Other interactions of SEC18

  • The vacuole v-t-SNARE complex is disassembled by Sec17p/alpha-SNAP and Sec18p/NSF prior to vacuole docking and fusion [18].
  • Vam10p defines a Sec18p-independent step of priming that allows yeast vacuole tethering [20].
  • The two tRNA genes, coding for a tRNA(asp) and a tRNA(arg), and three of the ORFs, had been sequenced previously, i.e. HSP26, SEC18, and UBC4 [21].
  • Upon priming by Sec18p/NSF and ATP, Vam2/6p is released as a 38S subcomplex that binds Ypt7p to initiate docking [22].
  • In this study, we show that the COOH-terminal domain of Ist2p is necessary and sufficient to mediate SEC18-independent sorting when it is positioned at the COOH terminus of different integral membrane proteins and exposed to the cytoplasm [6].
 

Analytical, diagnostic and therapeutic context of SEC18

References

  1. Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. Fröhlich, K.U., Fries, H.W., Rüdiger, M., Erdmann, R., Botstein, D., Mecke, D. J. Cell Biol. (1991) [Pubmed]
  2. Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Wickner, W., Haas, A. Annu. Rev. Biochem. (2000) [Pubmed]
  3. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Xu, Z., Sato, K., Wickner, W. Cell (1998) [Pubmed]
  4. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Latterich, M., Fröhlich, K.U., Schekman, R. Cell (1995) [Pubmed]
  5. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Kaiser, C.A., Schekman, R. Cell (1990) [Pubmed]
  6. SEC18/NSF-independent, protein-sorting pathway from the yeast cortical ER to the plasma membrane. Jüschke, C., Wächter, A., Schwappach, B., Seedorf, M. J. Cell Biol. (2005) [Pubmed]
  7. Characterization of a component of the yeast secretion machinery: identification of the SEC18 gene product. Eakle, K.A., Bernstein, M., Emr, S.D. Mol. Cell. Biol. (1988) [Pubmed]
  8. Defining components required for transport from the ER to the Golgi complex in yeast. Newman, A.P., Ferro-Novick, S. Bioessays (1990) [Pubmed]
  9. A screen for dominant negative mutants of SEC18 reveals a role for the AAA protein consensus sequence in ATP hydrolysis. Steel, G.J., Harley, C., Boyd, A., Morgan, A. Mol. Biol. Cell (2000) [Pubmed]
  10. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Wilson, D.W., Wilcox, C.A., Flynn, G.C., Chen, E., Kuang, W.J., Henzel, W.J., Block, M.R., Ullrich, A., Rothman, J.E. Nature (1989) [Pubmed]
  11. Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. Kato, M., Wickner, W. EMBO J. (2001) [Pubmed]
  12. The dynamics of golgi protein traffic visualized in living yeast cells. Wooding, S., Pelham, H.R. Mol. Biol. Cell (1998) [Pubmed]
  13. Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. Barlowe, C. J. Cell Biol. (1997) [Pubmed]
  14. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Ishihara, N., Hamasaki, M., Yokota, S., Suzuki, K., Kamada, Y., Kihara, A., Yoshimori, T., Noda, T., Ohsumi, Y. Mol. Biol. Cell (2001) [Pubmed]
  15. Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles. Rexach, M.F., Schekman, R.W. J. Cell Biol. (1991) [Pubmed]
  16. Biosynthesis of the side chain of yeast glycosylphosphatidylinositol anchors is operated by novel mannosyltransferases located in the endoplasmic reticulum and the Golgi apparatus. Sipos, G., Puoti, A., Conzelmann, A. J. Biol. Chem. (1995) [Pubmed]
  17. ATP-independent control of Vac8 palmitoylation by a SNARE subcomplex on yeast vacuoles. Dietrich, L.E., LaGrassa, T.J., Rohde, J., Cristodero, M., Meiringer, C.T., Ungermann, C. J. Biol. Chem. (2005) [Pubmed]
  18. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. Ungermann, C., Wickner, W. EMBO J. (1998) [Pubmed]
  19. Vac8p release from the SNARE complex and its palmitoylation are coupled and essential for vacuole fusion. Veit, M., Laage, R., Dietrich, L., Wang, L., Ungermann, C. EMBO J. (2001) [Pubmed]
  20. Vam10p defines a Sec18p-independent step of priming that allows yeast vacuole tethering. Kato, M., Wickner, W. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  21. Sequence analysis of a 31 kb DNA fragment from the right arm of Saccharomyces cerevisiae chromosome II. Van der Aart, Q.J., Barthe, C., Doignon, F., Aigle, M., Crouzet, M., Steensma, H.Y. Yeast (1994) [Pubmed]
  22. A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Seals, D.F., Eitzen, G., Margolis, N., Wickner, W.T., Price, A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  23. Crystal structure of the Sec18p N-terminal domain. Babor, S.M., Fass, D. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  24. The GTP-binding Sar1 protein is localized to the early compartment of the yeast secretory pathway. Nishikawa, S., Nakano, A. Biochim. Biophys. Acta (1991) [Pubmed]
 
WikiGenes - Universities