The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

arcB  -  ornithine carbamoyltransferase

Pseudomonas aeruginosa PAO1

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of arcB

  • The arcB gene appears to be more closely related to the E. coli argF gene than to the P. aeruginosa argF gene [1].
  • Like other highly expressed Pseudomonas genes, the arcB gene was found not to use seven codons which correspond to minor or weakly interacting tRNA species in E. coli [2].
  • Antisera were prepared against the anabolic and catabolic OTCases of Pseudomonas aeruginosa and Aeromonas formicans as well as against OTCase and putrescine carbamoyltransferases from Streptococcus faecalis; these antisera were then tested against the unpurified OTCases, either anabolic or catabolic, of 34 bacterial strains [3].
 

High impact information on arcB

  • The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures [4].
  • Dot blot experiments revealed that arc mRNAs extracted from the wild-type strain had similar chemical half-lives in the arcA, arcB and arcC regions, ranging from 16 to 13 minutes [5].
  • However, production of the phaseolotoxin-resistant OCTase encoded by argK, synthesis of phaseolotoxin, and infectivity for bean pods occur independently of the ArgR protein [6].
  • Gel retardation experiments indicated the presence in Pseudomonas aeruginosa cell extracts of an arginine-inducible DNA-binding protein that interacts with the control regions for the car and argF operons, encoding carbamoylphosphate synthetase and anabolic ornithine carbamoyltransferase, respectively [7].
  • Recently we reported the characterization of catabolic ornithine transcarbamylase and the corresponding gene, arcB, from Halobacterium salinarium (formerly Halobacterium halobium) [8].
 

Chemical compound and disease context of arcB

 

Biological context of arcB

 

Associations of arcB with chemical compounds

  • Under aerobic conditions, a mutant (PA0630) which had less than 1% of the wild-type catabolic ornithine carbamoyltransferase activity grew on arginine as the only carbon and nitrogen source, at the wild-type growth rate [9].
  • These results indicate that at least two residues of catabolic ornithine carbamoyltransferase are critically involved in positive carbamoylphosphate cooperativity: glutamate 105 (previously known to be important) and methionine 321 [12].
  • The anabolic ornithine carbamoyltransferase encoded by the argF gene catalyzes the formation of citrulline from ornithine and carbamoylphosphate [12].
 

Other interactions of arcB

  • The arcA mutation was highly cotransducible with arcB [13].
  • The suppressor locus arcB (Su) was mapped by transduction between hisII and argA [9].
 

Analytical, diagnostic and therapeutic context of arcB

References

  1. Anabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa: nucleotide sequence and transcriptional control of the argF structural gene. Itoh, Y., Soldati, L., Stalon, V., Falmagne, P., Terawaki, Y., Leisinger, T., Haas, D. J. Bacteriol. (1988) [Pubmed]
  2. Primary and quaternary structure of the catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa. Extensive sequence homology with the anabolic ornithine carbamoyltransferases of Escherichia coli. Baur, H., Stalon, V., Falmagne, P., Luethi, E., Haas, D. Eur. J. Biochem. (1987) [Pubmed]
  3. Evolutionary relationships among bacterial carbamoyltransferases. Tricot, C., De Coen, J.L., Momin, P., Falmagne, P., Stalon, V. J. Gen. Microbiol. (1989) [Pubmed]
  4. The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures. Villeret, V., Clantin, B., Tricot, C., Legrain, C., Roovers, M., Stalon, V., Glansdorff, N., Van Beeumen, J. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  5. RNA processing modulates the expression of the arcDABC operon in Pseudomonas aeruginosa. Gamper, M., Ganter, B., Polito, M.R., Haas, D. J. Mol. Biol. (1992) [Pubmed]
  6. The global arginine regulator ArgR controls expression of argF in Pseudomonas syringae pv. phaseolicola but is not required for the synthesis of phaseolotoxin or for the regulated expression of argK. Hernández-Flores, J.L., López-López, K., Garcidueñas-Piña, R., Jofre-Garfias, A.E., Alvarez-Morales, A. J. Bacteriol. (2004) [Pubmed]
  7. Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa PAO1. Park, S.M., Lu, C.D., Abdelal, A.T. J. Bacteriol. (1997) [Pubmed]
  8. Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): genes, gene products, and transcripts of the arcRACB gene cluster. Ruepp, A., Soppa, J. J. Bacteriol. (1996) [Pubmed]
  9. Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase. Hass, D., Evans, R., Mercenier, A., Simon, J.P., Stalon, V. J. Bacteriol. (1979) [Pubmed]
  10. Steady-state kinetics and analysis of pH dependence on wild-type and a modified allosteric Pseudomonas aeruginosa ornithine carbamoyltransferase containing the replacement of glutamate 105 by alanine. Tricot, C., Nguyen, V.T., Stalon, V. Eur. J. Biochem. (1993) [Pubmed]
  11. Kinetic studies of allosteric catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa. Sainz, G., Tricot, C., Foray, M.F., Marion, D., Dideberg, O., Stalon, V. Eur. J. Biochem. (1998) [Pubmed]
  12. Methionine-321 in the C-terminal alpha-helix of catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa is important for positive homotropic cooperativity. Nguyen, V.T., Tricot, C., Stalon, V., Dideberg, O., Villeret, V., Haas, D. FEMS Microbiol. Lett. (1994) [Pubmed]
  13. Mapping of the arginine deiminase gene in Pseudomonas aeruginosa. Mercenier, A., Stalon, V., Simon, J.P., Haas, D. J. Bacteriol. (1982) [Pubmed]
  14. Molecular size and symmetry of Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase. An X-ray crystallography analysis. Marcq, S., Diaz-Ruano, A., Charlier, P., Dideberg, O., Tricot, C., Piérard, A., Stalon, V. J. Mol. Biol. (1991) [Pubmed]
  15. Purification, crystallization and preliminary X-ray analysis of catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa. Sainz, G., Vicat, J., Kahn, R., Tricot, C., Stalon, V., Dideberg, O. Acta Crystallogr. D Biol. Crystallogr. (1999) [Pubmed]
 
WikiGenes - Universities