The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

accB  -  acetyl CoA carboxylase, BCCP subunit

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK3242, JW3223, fabE
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of accB

 

High impact information on accB

  • cDNA fragments encoding the carboxyltransferase domain of the multidomain plastid acetyl-CoA carboxylase (ACCase) from herbicide-resistant maize and from herbicide-sensitive and herbicide-resistant Lolium rigidum were cloned and sequenced [5].
  • An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors [5].
  • This sequence is highly conserved in all the biotin enzymes that have been sequenced (with the exception of acetyl-CoA carboxylase from chicken liver, which has Val in place of Ala) [6].
  • Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid biosynthesis, the synthesis of malonyl-CoA from acetyl-CoA using ATP and bicarbonate [7].
  • Interestingly, the genomes of Corynebacterianeae possess a high number of accD genes, whose gene products resemble the beta-subunit of the acetyl-CoA carboxylase of Escherichia coli, providing the activated intermediate for fatty acid synthesis [8].
 

Chemical compound and disease context of accB

 

Biological context of accB

 

Anatomical context of accB

  • Mammals, fungi, and plant cytosols contain the second type of ACC, a single large multifunctional polypeptide [15].
  • Both T. gondii isozymes are resistant to cyclohexanediones, another class of inhibitors targeting the ACC of grass plastids [16].
 

Associations of accB with chemical compounds

  • Acetyl-coA carboxylase (ACC) is a central metabolic enzyme that catalyzes the committed step in fatty acid biosynthesis: biotin-dependent conversion of acetyl-coA to malonyl-coA [17].
  • The deduced sequence shows regions of extensive homology with the beta subunit of mammalian propionyl-CoA carboxylase as well as regions of homology with acetyl-CoA carboxylase from several species [18].
 

Analytical, diagnostic and therapeutic context of accB

References

  1. Molecular characterization of Lactobacillus plantarum genes for beta-ketoacyl-acyl carrier protein synthase III (fabH) and acetyl coenzyme A carboxylase (accBCDA), which are essential for fatty acid biosynthesis. Kiatpapan, P., Kobayashi, H., Sakaguchi, M., Ono, H., Yamashita, M., Kaneko, Y., Murooka, Y. Appl. Environ. Microbiol. (2001) [Pubmed]
  2. Maltose metabolism of Lactobacillus sanfranciscensis: cloning and heterologous expression of the key enzymes, maltose phosphorylase and phosphoglucomutase. Ehrmann, M.A., Vogel, R.F. FEMS Microbiol. Lett. (1998) [Pubmed]
  3. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. Davis, M.S., Solbiati, J., Cronan, J.E. J. Biol. Chem. (2000) [Pubmed]
  4. Analysis of bacterial biotin-proteins. Fall, R.R., Alberts, A.W., Vagelos, P.R. Biochim. Biophys. Acta (1975) [Pubmed]
  5. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors. Zagnitko, O., Jelenska, J., Tevzadze, G., Haselkorn, R., Gornicki, P. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  6. Effect of mutations at Met-88 and Met-90 on the biotination of Lys-89 of the apo 1.3S subunit of transcarboxylase. Shenoy, B.C., Paranjape, S., Murtif, V.L., Kumar, G.K., Samols, D., Wood, H.G. FASEB J. (1988) [Pubmed]
  7. Expression of two Escherichia coli acetyl-CoA carboxylase subunits is autoregulated. James, E.S., Cronan, J.E. J. Biol. Chem. (2004) [Pubmed]
  8. Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. Gande, R., Gibson, K.J., Brown, A.K., Krumbach, K., Dover, L.G., Sahm, H., Shioyama, S., Oikawa, T., Besra, G.S., Eggeling, L. J. Biol. Chem. (2004) [Pubmed]
  9. Purification and characterization of intact and truncated forms of the Escherichia coli biotin carboxyl carrier subunit of acetyl-CoA carboxylase. Nenortas, E., Beckett, D. J. Biol. Chem. (1996) [Pubmed]
  10. Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. Wachi, M., Doi, M., Tamaki, S., Park, W., Nakajima-Iijima, S., Matsuhashi, M. J. Bacteriol. (1987) [Pubmed]
  11. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Miyahisa, I., Funa, N., Ohnishi, Y., Martens, S., Moriguchi, T., Horinouchi, S. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  12. Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. Sasaki, Y., Hakamada, K., Suama, Y., Nagano, Y., Furusawa, I., Matsuno, R. J. Biol. Chem. (1993) [Pubmed]
  13. Molecular recognition in a post-translational modification of exceptional specificity. Mutants of the biotinylated domain of acetyl-CoA carboxylase defective in recognition by biotin protein ligase. Chapman-Smith, A., Morris, T.W., Wallace, J.C., Cronan, J.E. J. Biol. Chem. (1999) [Pubmed]
  14. Nucleotide sequence of the fabE gene and flanking regions containing a bent DNA sequence of Escherichia coli. Muramatsu, S., Mizuno, T. Nucleic Acids Res. (1989) [Pubmed]
  15. Multi-subunit acetyl-CoA carboxylases. Cronan, J.E., Waldrop, G.L. Prog. Lipid Res. (2002) [Pubmed]
  16. The carboxyltransferase activity of the apicoplast acetyl-CoA carboxylase of Toxoplasma gondii is the target of aryloxyphenoxypropionate inhibitors. Jelenska, J., Sirikhachornkit, A., Haselkorn, R., Gornicki, P. J. Biol. Chem. (2002) [Pubmed]
  17. The structure of the carboxyltransferase component of acetyl-coA carboxylase reveals a zinc-binding motif unique to the bacterial enzyme. Bilder, P., Lightle, S., Bainbridge, G., Ohren, J., Finzel, B., Sun, F., Holley, S., Al-Kassim, L., Spessard, C., Melnick, M., Newcomer, M., Waldrop, G.L. Biochemistry (2006) [Pubmed]
  18. Primary structure of the monomer of the 12S subunit of transcarboxylase as deduced from DNA and characterization of the product expressed in Escherichia coli. Thornton, C.G., Kumar, G.K., Haase, F.C., Phillips, N.F., Woo, S.B., Park, V.M., Magner, W.J., Shenoy, B.C., Wood, H.G., Samols, D. J. Bacteriol. (1993) [Pubmed]
  19. The genes encoding the two carboxyltransferase subunits of Escherichia coli acetyl-CoA carboxylase. Li, S.J., Cronan, J.E. J. Biol. Chem. (1992) [Pubmed]
  20. Solution structures of apo and holo biotinyl domains from acetyl coenzyme A carboxylase of Escherichia coli determined by triple-resonance nuclear magnetic resonance spectroscopy. Roberts, E.L., Shu, N., Howard, M.J., Broadhurst, R.W., Chapman-Smith, A., Wallace, J.C., Morris, T., Cronan, J.E., Perham, R.N. Biochemistry (1999) [Pubmed]
 
WikiGenes - Universities