The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cytophaga

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cytophaga

  • Homology searches indicated that the B. fragilis aconitase is most closely related to aconitases of two other Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria, Cytophaga hutchinsonii and Fibrobacter succinogenes [1].
  • These less polar lipids have been purified from a Capnocytophaga sp., a marine Cytophaga sp., Cytophaga johnsonae, and a Flexibacter sp. Acid methanolysis of the lipids yielded both aminosulfonates and a collection of fatty acid methyl esters [2].
  • Actinobacillus actinomycetemcomitans strains Y4 and N27 absorb to spheroidal hydroxyapatite in roughly the same numbers per milligram of substrate and with the same tenacity as two previously tested Cytophaga species [3].
  • 16S rRNA clones generated from the biofilm community indicated that species from the Cytophaga/Flavobacterium, high G+C bacteria and Proteobacteria were active at the time of sampling, expressing cndA-, nahAc- and phnAc-like naphthalene dioxygenases [4].
  • Compared with previously described Cytophaga and Flexibacter spp. with low guanine-plus-cytosine contents, F. ovolyticus constitutes a new species [5].
 

High impact information on Cytophaga

  • The structures of succinoglycan, and similar polymers containing riburonic acid or galactose as the end residue of the side chain, were elucidated by successive fragmentation with two special enzymes obtained from Cytophaga arvensicola followed by methylation analysis [6].
  • Glycoproteins (GP) previously shown to be involved in the gliding motility of Cytophaga johnsonae were examined for biological activities characteristic of lipopolysaccharide (LPS) [7].
  • Some probiotic bacteria, such as GR 8 (Cytophaga spp.), improved (not always significantly) the performance of nauplii beyond the effect observed with dead bacteria, independently of the feed supplied [8].
  • Phylogenetic analysis of sequence data revealed that the bacterial communities present in Antarctic sponges primarily clustered within the Gamma and Alpha proteobacteria and the Cytophaga/Flavobacterium of Bacteroidetes group [9].
  • Novel psychrophilic and thermolabile L-threonine dehydrogenase from psychrophilic Cytophaga sp. strain KUC-1 [10].
 

Chemical compound and disease context of Cytophaga

 

Biological context of Cytophaga

 

Gene context of Cytophaga

  • Effect of temperature shifts on gliding motility, adhesion, and fatty acid composition of Cytophaga sp. strain U67 [16].
  • Phospholipids and a novel glycine-containing lipoamino acid in Cytophaga johnsonae Stanier strain C21 [17].
  • Phylogenetic analysis of 16S rDNA sequences showed association of these organisms and [Cytophaga] lytica at the genus level [18].
  • The accumulation of the polysaccharide and the excreted metabolites of the strains LR1 and LR3 stimulated the development of Cytophaga sp. LR2 [19].
  • Thermostable aspartase from a marine psychrophile, Cytophaga sp. KUC-1: molecular characterization and primary structure [20].

References

  1. A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: implications for the evolution of the mitochondrial Krebs cycle. Baughn, A.D., Malamy, M.H. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  2. Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. Godchaux, W., Leadbetter, E.R. J. Biol. Chem. (1984) [Pubmed]
  3. Actinobacillus actinomycetemcomitans strains Y4 and N27 adhere to hydroxyapatite by distinctive mechanisms. Kagermeier, A.S., London, J. Infect. Immun. (1985) [Pubmed]
  4. Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Stach, J.E., Burns, R.G. Environ. Microbiol. (2002) [Pubmed]
  5. Flexibacter ovolyticus sp. nov., a pathogen of eggs and larvae of Atlantic halibut, Hippoglossus hippoglossus L. Hansen, G.H., Bergh, O., Michaelsen, J., Knappskog, D. Int. J. Syst. Bacteriol. (1992) [Pubmed]
  6. Special bacterial polysaccharides and polysaccharases. Harada, T. Biochem. Soc. Symp. (1983) [Pubmed]
  7. Lipopolysaccharidelike immunological properties of cell wall glycoproteins isolated from Cytophaga johnsonae. de Jong, D.M., Pate, J.L., Kirkland, T.N., Taylor, C.E., Baker, P.J., Takayama, K. Infect. Immun. (1991) [Pubmed]
  8. Effects of bacteria on Artemia franciscana cultured in different gnotobiotic environments. Marques, A., Dinh, T., Ioakeimidis, C., Huys, G., Swings, J., Verstraete, W., Dhont, J., Sorgeloos, P., Bossier, P. Appl. Environ. Microbiol. (2005) [Pubmed]
  9. Diverse microbial communities inhabit Antarctic sponges. Webster, N.S., Negri, A.P., Munro, M.M., Battershill, C.N. Environ. Microbiol. (2004) [Pubmed]
  10. Novel psychrophilic and thermolabile L-threonine dehydrogenase from psychrophilic Cytophaga sp. strain KUC-1. Kazuoka, T., Takigawa, S., Arakawa, N., Hizukuri, Y., Muraoka, I., Oikawa, T., Soda, K. J. Bacteriol. (2003) [Pubmed]
  11. Attachment of oral Cytophaga species to hydroxyapatite-containing surfaces. Celesk, R.A., London, J. Infect. Immun. (1980) [Pubmed]
  12. Outer membrane polysaccharide deficiency in two nongliding mutants of Cytophaga johnsonae. Godchaux, W., Gorski, L., Leadbetter, E.R. J. Bacteriol. (1990) [Pubmed]
  13. Increase of ornithine amino lipid content in a sulfonolipid-deficient mutant of Cytophaga johnsonae. Pitta, T.P., Leadbetter, E.R., Godchaux, W. J. Bacteriol. (1989) [Pubmed]
  14. Description of Aquimarina muelleri gen. nov., sp. nov., and proposal of the reclassification of [Cytophaga] latercula Lewin 1969 as Stanierella latercula gen. nov., comb. nov. Nedashkovskaya, O.I., Kim, S.B., Lysenko, A.M., Frolova, G.M., Mikhailov, V.V., Lee, K.H., Bae, K.S. Int. J. Syst. Evol. Microbiol. (2005) [Pubmed]
  15. Studies on cell growth stimulating substances of low molecular weight. Part 3. Resorcinin, a mammalian cell growth stimulating substance produced by Cytophaga johnsonae. Imai, S., Fujioka, K., Furihata, K., Fudo, R., Yamanaka, S., Seto, H. J. Antibiot. (1993) [Pubmed]
  16. Effect of temperature shifts on gliding motility, adhesion, and fatty acid composition of Cytophaga sp. strain U67. McGrath, C.F., Moss, C.W., Burchard, R.P. J. Bacteriol. (1990) [Pubmed]
  17. Phospholipids and a novel glycine-containing lipoamino acid in Cytophaga johnsonae Stanier strain C21. Kawazoe, R., Okuyama, H., Reichardt, W., Sasaki, S. J. Bacteriol. (1991) [Pubmed]
  18. Description of Cellulophaga baltica gen. nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [Cytophaga] lytica to Cellulophaga lytica gen. nov., comb. nov. Johansen, J.E., Nielsen, P., Sjøholm, C. Int. J. Syst. Bacteriol. (1999) [Pubmed]
  19. Interactions between the unicellular red alga Rhodella reticulata (Rhodophyta) and contaminated bacteria. Toncheva-Panova, T.G., Ivanova, J.G. J. Appl. Microbiol. (2002) [Pubmed]
  20. Thermostable aspartase from a marine psychrophile, Cytophaga sp. KUC-1: molecular characterization and primary structure. Kazuoka, T., Masuda, Y., Oikawa, T., Soda, K. J. Biochem. (2003) [Pubmed]
 
WikiGenes - Universities