The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

aspA  -  aspartate ammonia-lyase

Escherichia coli O157:H7 str. Sakai

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ECs5120


High impact information on ECs5120

  • Fumarase C has sequence homology to the eukaryotic fumarases, aspartase, arginosuccinate lyase, adenylosuccinate lyase and delta-crystallin [6].
  • The amino acid sequence of the protein predicted from the nucleotide sequence was consistent with those of the NH2- and COOH-terminal regions and also with the amino acid composition of the purified aspartase determined previously [1].
  • Of these regions, the region of Gln96-Gly100 is proposed as a part of the recognition site of the alpha-amino group in L-aspartate for aspartase and the hydroxyl group in L-malate for fumarase [7].
  • The regions of Gly228-Glu241 and Val265-Asp272, which form a part of the active-site wall, are suggested to be involved in the allosteric activation of the E.coli aspartase by the binding of the metal ion and the activator [7].
  • The aspA structural gene comprises 1431 base-pairs (477 codons excluding the initiation codon), and it encodes a polypeptide of Mr 52190, similar to that predicted from maxicell studies and for the enzyme from E. coli W [8].

Chemical compound and disease context of ECs5120


Biological context of ECs5120

  • To increase the stability of the aspA plasmid, pNK101 (pBR322::aspA-par) was constructed by using the partition locus (par) derived from the low-copy vector pSC101 [13].
  • We report results from preliminary transcription microarray experiments that revealed two previously unknown members of the NarL regulon: the aspA gene encoding aspartate-ammonia lyase, which generates fumarate; and the dcuSR operon encoding the dicarboxylate-responsive regulatory system [14].
  • Enzymatic generation of mutant libraries for random mutagenesis of aspartase gene from E. coli J2 was made [15].
  • The lack of correspondence between the amplified proteins and the products of other amp-linked genes, aspA and mop(groE), indicated that these genes are not included in the repetitive sequence [16].
  • Aspartase purified from Escherichia coli W cells was inactivated by diethylpyrocarbonate following pseudo-first order kinetics [17].

Anatomical context of ECs5120


Associations of ECs5120 with chemical compounds


Analytical, diagnostic and therapeutic context of ECs5120


  1. Cloning and nucleotide sequence of the aspartase gene of Escherichia coli W. Takagi, J.S., Ida, N., Tokushige, M., Sakamoto, H., Shimura, Y. Nucleic Acids Res. (1985) [Pubmed]
  2. Cloning and sequence determination of the aspartase-encoding gene from Brevibacterium flavum MJ233. Asai, Y., Inui, M., Vertès, A., Kobayashi, M., Yukawa, H. Gene (1995) [Pubmed]
  3. Isolation of a versatile Serratia marcescens mutant as a host and molecular cloning of the aspartase gene. Takagi, T., Kisumi, M. J. Bacteriol. (1985) [Pubmed]
  4. Cloning and over-expression of thermostable Bacillus sp. YM55-1 aspartase and site-directed mutagenesis for probing a catalytic residue. Kawata, Y., Tamura, K., Kawamura, M., Ikei, K., Mizobata, T., Nagai, J., Fujita, M., Yano, S., Tokushige, M., Yumoto, N. Eur. J. Biochem. (2000) [Pubmed]
  5. Thermostable aspartase from a marine psychrophile, Cytophaga sp. KUC-1: molecular characterization and primary structure. Kazuoka, T., Masuda, Y., Oikawa, T., Soda, K. J. Biochem. (2003) [Pubmed]
  6. The multisubunit active site of fumarase C from Escherichia coli. Weaver, T.M., Levitt, D.G., Donnelly, M.I., Stevens, P.P., Banaszak, L.J. Nat. Struct. Biol. (1995) [Pubmed]
  7. Crystal structure of thermostable aspartase from Bacillus sp. YM55-1: structure-based exploration of functional sites in the aspartase family. Fujii, T., Sakai, H., Kawata, Y., Hata, Y. J. Mol. Biol. (2003) [Pubmed]
  8. Structural and functional relationships between fumarase and aspartase. Nucleotide sequences of the fumarase (fumC) and aspartase (aspA) genes of Escherichia coli K12. Woods, S.A., Miles, J.S., Roberts, R.E., Guest, J.R. Biochem. J. (1986) [Pubmed]
  9. Influence of increased aspartate availability on lysine formation by a recombinant strain of Corynebacterium glutamicum and utilization of fumarate. Menkel, E., Thierbach, G., Eggeling, L., Sahm, H. Appl. Environ. Microbiol. (1989) [Pubmed]
  10. Activation of aspartase by site-directed mutagenesis. Murase, S., Takagi, J.S., Higashi, Y., Imaishi, H., Yumoto, N., Tokushige, M. Biochem. Biophys. Res. Commun. (1991) [Pubmed]
  11. Assignment of catalytically essential cysteine residues in aspartase by selective chemical modification with N-(7-dimethylamino-4-methylcoumarynyl)maleimide. Ida, N., Tokushige, M. J. Biochem. (1985) [Pubmed]
  12. Possible physiological roles of aspartase, NAD- and NADP-requiring glutamate dehydrogenases of Pseudomonas fluorescens. Miyamoto, K., Katsuki, H. J. Biochem. (1992) [Pubmed]
  13. Increased production of aspartase in Escherichia coli K-12 by use of stabilized aspA recombinant plasmid. Nishimura, N., Komatsubara, S., Kisumi, M. Appl. Environ. Microbiol. (1987) [Pubmed]
  14. Hierarchical control of anaerobic gene expression in Escherichia coli K-12: the nitrate-responsive NarX-NarL regulatory system represses synthesis of the fumarate-responsive DcuS-DcuR regulatory system. Goh, E.B., Bledsoe, P.J., Chen, L.L., Gyaneshwar, P., Stewart, V., Igo, M.M. J. Bacteriol. (2005) [Pubmed]
  15. Enhancement of the stability and activity of aspartase by random and site-directed mutagenesis. Zhang, H.Y., Zhang, J., Lin, L., Du, W.Y., Lu, J. Biochem. Biophys. Res. Commun. (1993) [Pubmed]
  16. Production of a soluble form of fumarate reductase by multiple gene duplication in Escherichia coli K12. Cole, S.T., Guest, J.R. Eur. J. Biochem. (1979) [Pubmed]
  17. Chemical modification of essential histidine residues in aspartase with diethylpyrocarbonate. Ida, N., Tokushige, M. J. Biochem. (1984) [Pubmed]
  18. Engineering analysis of continuous production of L-aspartic acid by immobilized Escherichia coli cells in fixed beds. Sato, T., Mori, T., Tosa, T., Chibata, I., Furui, M. Biotechnol. Bioeng. (1975) [Pubmed]
  19. Evaluation of functionally important amino acids in L-aspartate ammonia-lyase from Escherichia coli. Jayasekera, M.M., Shi, W., Farber, G.K., Viola, R.E. Biochemistry (1997) [Pubmed]
  20. Aspartase-hyperproducing mutants of Escherichia coli B. Nishimura, N., Kisumi, M. Appl. Environ. Microbiol. (1984) [Pubmed]
  21. Acid-base chemical mechanism of aspartase from Hafnia alvei. Yoon, M.Y., Thayer-Cook, K.A., Berdis, A.J., Karsten, W.E., Schnackerz, K.D., Cook, P.F. Arch. Biochem. Biophys. (1995) [Pubmed]
  22. Activation of aspartase by glycerol. Tokushige, M., Mizuta, K. Biochem. Biophys. Res. Commun. (1976) [Pubmed]
  23. Purification and characterization of thermostable aspartase from Bacillus sp. YM55-1. Kawata, Y., Tamura, K., Yano, S., Mizobata, T., Nagai, J., Esaki, N., Soda, K., Tokushige, M., Yumoto, N. Arch. Biochem. Biophys. (1999) [Pubmed]
  24. Identification of an active dimeric form of aspartase as a denaturation intermediate. Murase, S., Kawata, Y., Yumoto, N. J. Biochem. (1993) [Pubmed]
  25. Alteration of substrate specificity of aspartase by directed evolution. Asano, Y., Kira, I., Yokozeki, K. Biomol. Eng. (2005) [Pubmed]
WikiGenes - Universities