The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Fibrobacter

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Fibrobacter

 

High impact information on Fibrobacter

  • Two adjacent, highly homologous endoglucanase genes, celD and celE from Fibrobacter succinogenes S85, which were separated by an AT-rich 223-nucleotide intergenic region were characterized [5].
  • When glucose or cellobiose was provided as an energy source for Fibrobacter succinogenes, there was a transient accumulation (as much as 0.4 mM hexose equivalent) of cellobiose or cellotriose, respectively, in the growth medium [6].
  • The outer membrane (OM) of Fibrobacter succinogenes was isolated by a combination of salt, sucrose, and water washes from whole cells grown on either glucose or cellulose [7].
  • The xynC gene of Fibrobacter succinogenes S85 codes for a 66.4-kDa xylanase which consists of three distinct domains separated by two flexible regions rich in serine residues [8].
  • endAFS, a novel family E endoglucanase gene from Fibrobacter succinogenes AR1 [9].
 

Chemical compound and disease context of Fibrobacter

  • Extracellular beta-galactosidase activity of a Fibrobacter succinogenes S85 mutant able to catabolize lactose [10].
  • Antigenic nature of the chloride-stimulated cellobiosidase and other cellulases of Fibrobacter succinogenes subsp. succinogenes S85 and related fresh isolates [11].
  • Fibrobacter succinogenes subsp. succinogenes S85 initiated growth on microcrystalline cellulose without a lag whether inoculated from a glucose, cellobiose, or cellulose culture [12].
  • Structural analysis of the carbohydrate components of the outer membrane of the lipopolysaccharide-lacking cellulolytic ruminal bacterium Fibrobacter succinogenes S85 [13].
  • The phylogenetic placement of the rumen bacterium Fibrobacter succinogenes was determined using a signature sequence approach that allows determination of the relative branching order of the major divisions among Bacteria [Gupta, R. S. (2000) FEMS Microbiol Rev 24, 367-402] [14].
 

Biological context of Fibrobacter

 

Gene context of Fibrobacter

 

Analytical, diagnostic and therapeutic context of Fibrobacter

References

  1. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria. Shi, Y., Weimer, P.J. Appl. Environ. Microbiol. (1996) [Pubmed]
  2. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Gordon, D.A., Giovannoni, S.J. Appl. Environ. Microbiol. (1996) [Pubmed]
  3. Cellobiose uptake by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes. Maas, L.K., Glass, T.L. Can. J. Microbiol. (1991) [Pubmed]
  4. The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria. Ling, J.R., Armstead, I.P. J. Appl. Bacteriol. (1995) [Pubmed]
  5. A novel family 9 endoglucanase gene (celD), whose product cleaves substrates mainly to glucose, and its adjacent upstream homolog (celE) from Fibrobacter succinogenes S85. Malburg, L.M., Iyo, A.H., Forsberg, C.W. Appl. Environ. Microbiol. (1996) [Pubmed]
  6. Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Wells, J.E., Russell, J.B., Shi, Y., Weimer, P.J. Appl. Environ. Microbiol. (1995) [Pubmed]
  7. Separation of outer and cytoplasmic membranes of Fibrobacter succinogenes and membrane and glycogen granule locations of glycanases and cellobiase. Gong, J., Forsberg, C.W. J. Bacteriol. (1993) [Pubmed]
  8. The xynC gene from Fibrobacter succinogenes S85 codes for a xylanase with two similar catalytic domains. Paradis, F.W., Zhu, H., Krell, P.J., Phillips, J.P., Forsberg, C.W. J. Bacteriol. (1993) [Pubmed]
  9. endAFS, a novel family E endoglucanase gene from Fibrobacter succinogenes AR1. Cavicchioli, R., East, P.D., Watson, K. J. Bacteriol. (1991) [Pubmed]
  10. Extracellular beta-galactosidase activity of a Fibrobacter succinogenes S85 mutant able to catabolize lactose. Javorsky, P., Lee, S.F., Gibbins, A.M., Forsberg, C.W. Appl. Environ. Microbiol. (1990) [Pubmed]
  11. Antigenic nature of the chloride-stimulated cellobiosidase and other cellulases of Fibrobacter succinogenes subsp. succinogenes S85 and related fresh isolates. Huang, L., McGavin, M., Forsberg, C.W., Lam, J.S., Cheng, K.J. Appl. Environ. Microbiol. (1990) [Pubmed]
  12. Cellulose digestion and cellulase regulation and distribution in Fibrobacter succinogenes subsp. succinogenes S85. Huang, L., Forsberg, C.W. Appl. Environ. Microbiol. (1990) [Pubmed]
  13. Structural analysis of the carbohydrate components of the outer membrane of the lipopolysaccharide-lacking cellulolytic ruminal bacterium Fibrobacter succinogenes S85. Vinogradov, E., Egbosimba, E.E., Perry, M.B., Lam, J.S., Forsberg, C.W. Eur. J. Biochem. (2001) [Pubmed]
  14. The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that Fibrobacter diverged at a similar time to Chlamydia and the Cytophaga-Flavobacterium-Bacteroides division. Griffiths, E., Gupta, R.S. Microbiology (Reading, Engl.) (2001) [Pubmed]
  15. Phosphorylation of glucose by a guanosine-5'-triphosphate (GTP)-dependent glucokinase in Fibrobacter succinogenes subsp. succinogenes S85. Glass, T.L., Sherwood, J.S. Arch. Microbiol. (1994) [Pubmed]
  16. The role of tryptophan residues in substrate binding to catalytic domains A and B of xylanase C from Fibrobacter succinogenes S85. McAllister, K.A., Marrone, L., Clarke, A.J. Biochim. Biophys. Acta (2000) [Pubmed]
  17. Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85. Matte, A., Forsberg, C.W., Verrinder Gibbins, A.M. Can. J. Microbiol. (1992) [Pubmed]
  18. Properties of cellulose-binding modules in endoglucanase F from Fibrobacter succinogenes S85 by means of surface plasmon resonance. Mitsumori, M., Xu, L., Kajikawa, H., Kurihara, M. FEMS Microbiol. Lett. (2002) [Pubmed]
  19. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Amann, R.I., Krumholz, L., Stahl, D.A. J. Bacteriol. (1990) [Pubmed]
  20. Gene sequence analysis and properties of EGC, a family E (9) endoglucanase from Fibrobacter succinogenes BL2. Bera, C., Broussolle, V., Forano, E., Gaudet, G. FEMS Microbiol. Lett. (1996) [Pubmed]
 
WikiGenes - Universities