The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on Apicomplexa

  • Two of these, uridine kinase-uracil phosphoribosyltransferase and thymidine kinase, are unique to C. parvum within the phylum Apicomplexa [1].
  • We have examined enolases from a wide variety of algae, as well as ciliates (close relatives of apicomplexa), to determine whether lateral transfer can account for the origin of the apicomplexan enolase [2].
  • Gene discovery by EST sequencing in Toxoplasma gondii reveals sequences restricted to the Apicomplexa [3].
  • These findings provide important insights into the low cytosolic abundance and unique turnover characteristics of actin polymers in parasites of the phylum Apicomplexa [4].
  • A family of intramembrane serine proteases called rhomboids have now been identified within Apicomplexa, and one Toxoplasma rhomboid has been localized to the posterior end of the parasite [5].

Biological context of Apicomplexa


Anatomical context of Apicomplexa


Associations of Apicomplexa with chemical compounds

  • The resurgence of drug-resistant apicomplexa, in particular Plasmodium falciparum, the most fatal human malarial parasite, has focused attention on the recent discovery of the shikimate pathway in these organisms, as it may provide the urgently required, novel drug targets resulting from the absence of this pathway in mammals [9].
  • Moreover, flurazepam was found to be active against Toxoplasma gondii, another member of the phylum Apicomplexa [10].
  • Compound 1 inhibits the growth of several related protozoan parasites of the subphylum Apicomplexa [11].
  • This bifunctional organisation of carbamoyl phosphate synthetase II is unique, so far, to protozoan parasites from the phylum Apicomplexa (Plasmodium, Babesia, Toxoplasma) or zoomastigina (Trypanosoma, Leishmania) [12].
  • Occurrence of Perkinsus olseni (Protozoa: Apicomplexa) and other parasites in the venerid commercial clam Pitar rostrata from Uruguay, southwestern Atlantic coast [13].

Gene context of Apicomplexa

  • The apicomplexa parasite Toxoplasma gondii expresses two distinct proliferating cell nuclear antigens (PCNA) that exhibit distinct patterns of subcellular localization during tachyzoite growth [14].
  • Catalase is a potent H2O2-detoxifying enzyme, which is unexpectedly absent in some members of the Kinetoplastida and Apicomplexa, but present in Toxoplasma gondii [15].
  • We have identified additional SRCAP-like sequences in Apicomplexa for comparison by screening genomic databases [16].
  • In Toxoplasma gondii, an essential activity called microneme protein protease 1 (MPP1) cleaves secreted adhesive proteins within their transmembrane domains, at a site conserved in similar proteins of other Apicomplexa [7].
  • To determine whether multivesicular body endosomal intermediates are formed in Apicomplexa, we used the Plasmodium falciparum homolog of the class E gene, Vps4, as a probe [17].

Analytical, diagnostic and therapeutic context of Apicomplexa


  1. Gene transfer in the evolution of parasite nucleotide biosynthesis. Striepen, B., Pruijssers, A.J., Huang, J., Li, C., Gubbels, M.J., Umejiego, N.N., Hedstrom, L., Kissinger, J.C. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  2. Lateral transfer at the gene and subgenic levels in the evolution of eukaryotic enolase. Keeling, P.J., Palmer, J.D. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  3. Gene discovery by EST sequencing in Toxoplasma gondii reveals sequences restricted to the Apicomplexa. Ajioka, J.W., Boothroyd, J.C., Brunk, B.P., Hehl, A., Hillier, L., Manger, I.D., Marra, M., Overton, G.C., Roos, D.S., Wan, K.L., Waterston, R., Sibley, L.D. Genome Res. (1998) [Pubmed]
  4. A Plasmodium actin-depolymerizing factor that binds exclusively to actin monomers. Schüler, H., Mueller, A.K., Matuschewski, K. Mol. Biol. Cell (2005) [Pubmed]
  5. The role of malaria merozoite proteases in red blood cell invasion. O'Donnell, R.A., Blackman, M.J. Curr. Opin. Microbiol. (2005) [Pubmed]
  6. Papers from the COST Action 857 Workshop V Biodiversity and population genetics of the Apicomplexa (Congress Centre of the Bambino Gesu Hospital, Rome, November 8-9, 2004). Putignani, L., Russo, C., Alano, P., Pozio, E. Parassitologia (2005) [Pubmed]
  7. Rhomboid-like proteins in Apicomplexa: phylogeny and nomenclature. Dowse, T.J., Soldati, D. Trends Parasitol. (2005) [Pubmed]
  8. Immunodetection of the microvillous cytoskeleton molecules villin and ezrin in the parasitophorous vacuole wall of Cryptosporidium parvum (Protozoa: Apicomplexa). Bonnin, A., Lapillonne, A., Petrella, T., Lopez, J., Chaponnier, C., Gabbiani, G., Robine, S., Dubremetz, J.F. Eur. J. Cell Biol. (1999) [Pubmed]
  9. Subcellular localization and characterization of chorismate synthase in the apicomplexan Plasmodium falciparum. Fitzpatrick, T., Ricken, S., Lanzer, M., Amrhein, N., Macheroux, P., Kappes, B. Mol. Microbiol. (2001) [Pubmed]
  10. Ligands of the peripheral benzodiazepine receptor are potent inhibitors of Plasmodium falciparum and Toxoplasma gondii in vitro. Dzierszinski, F., Coppin, A., Mortuaire, M., Dewailly, E., Slomianny, C., Ameisen, J.C., DeBels, F., Tomavo, S. Antimicrob. Agents Chemother. (2002) [Pubmed]
  11. Characterization of Plasmodium falciparum cGMP-dependent protein kinase (PfPKG): antiparasitic activity of a PKG inhibitor. Diaz, C.A., Allocco, J., Powles, M.A., Yeung, L., Donald, R.G., Anderson, J.W., Liberator, P.A. Mol. Biochem. Parasitol. (2006) [Pubmed]
  12. Organisation and sequence determination of glutamine-dependent carbamoyl phosphate synthetase II in Toxoplasma gondii. Fox, B.A., Bzik, D.J. Int. J. Parasitol. (2003) [Pubmed]
  13. Occurrence of Perkinsus olseni (Protozoa: Apicomplexa) and other parasites in the venerid commercial clam Pitar rostrata from Uruguay, southwestern Atlantic coast. Cremonte, F., Balseiro, P., Figueras, A. Dis. Aquat. Org. (2005) [Pubmed]
  14. Biochemical and genetic analysis of the distinct proliferating cell nuclear antigens of Toxoplasma gondii. Guerini, M.N., Behnke, M.S., White, M.W. Mol. Biochem. Parasitol. (2005) [Pubmed]
  15. The antioxidant systems in Toxoplasma gondii and the role of cytosolic catalase in defence against oxidative injury. Ding, M., Kwok, L.Y., Schlüter, D., Clayton, C., Soldati, D. Mol. Microbiol. (2004) [Pubmed]
  16. Molecular cloning and characterization of an SRCAP chromatin remodeling homologue in Toxoplasma gondii. Sullivan, W.J., Monroy, M.A., Bohne, W., Nallani, K.C., Chrivia, J., Yaciuk, P., Smith, C.K., Queener, S.F. Parasitol. Res. (2003) [Pubmed]
  17. The Plasmodium falciparum Vps4 homolog mediates multivesicular body formation. Yang, M., Coppens, I., Wormsley, S., Baevova, P., Hoppe, H.C., Joiner, K.A. J. Cell. Sci. (2004) [Pubmed]
  18. The action of polyether ionophorous antibiotics (monensin, salinomycin, lasalocid) on developmental stages of Eimeria tenella (Coccidia, Sporozoa) in vivo and in vitro: study by light and electron microscopy. Mehlhorn, H., Pooch, H., Raether, W. Zeitschrift für Parasitenkunde (Berlin, Germany) (1983) [Pubmed]
WikiGenes - Universities