The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on Kinetoplastida

  • Parasitic protozoa belonging to the order Kinetoplastida contain trypanothione as their major thiol [1].
  • In mitochondria of Kinetoplastida belonging to the suborder Trypanosomatina, the nucleotide sequence of transcripts is post-transcriptionally edited via insertion and deletion of uridylate residues [2].
  • Protozoan parasites of the order Kinetoplastida may represent an exception, because pol I can mediate the expression of exogenously introduced protein-coding genes in these single-cell organisms [3].
  • Using antibodies specific for J, we have developed sensitive assays to screen for J in a range of organisms and have found that J is not limited to trypanosomes that undergo antigenic variation but is conserved among Kinetoplastida [4].
  • Glucose transport in T. cruzi is mediated via a carrier with unique properties when compared with the other glucose transporters already characterized among the Kinetoplastida [5].

Biological context of Kinetoplastida


Anatomical context of Kinetoplastida


Associations of Kinetoplastida with chemical compounds

  • Beta-D-Glucosyl-hydroxymethyluracil, also called base J, is an unusually modified DNA base conserved among Kinetoplastida [14].
  • Protozoa of the order Kinetoplastida differ from other organisms in their ability to conjugate glutathione (l-gamma-glutamyl-cysteinyl-glycine) and spermidine to form trypanothione [N(1),N(8)-bis(glutathionyl)spermidine], a metabolite involved in defense against chemical and oxidant stress and other biosynthetic functions [15].
  • The overall similarity, as judged by the distribution of enzyme activities, of purine salvage in these three members of the kinetoplastida suggest a broad spectrum of activity for any inhibitor acting in this area; the plethora of alternative salvage pathways, however, suggests that in no case would such inhibition be cidal [16].
  • As with the hexose transporters in the other members of Kinetoplastida, the TvHT1-encoded system differs from erythrocyte-type glucose transport by its moderate sensitivity to cytochalasin B and its capacity to transport fructose [17].
  • In a Neighbor-Net analysis of sequence similarity with homologues from numerous prokaryotes and eukaryotes, cytosolic phosphoglycerate kinase of E. gracilis showed the highest similarity to cytosolic and glycosomal homologues from the Kinetoplastida [18].

Gene context of Kinetoplastida


  1. Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. Dumas, C., Ouellette, M., Tovar, J., Cunningham, M.L., Fairlamb, A.H., Tamar, S., Olivier, M., Papadopoulou, B. EMBO J. (1997) [Pubmed]
  2. Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli. Lukes, J., Arts, G.J., van den Burg, J., de Haan, A., Opperdoes, F., Sloof, P., Benne, R. EMBO J. (1994) [Pubmed]
  3. Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Lee, M.G., Van der Ploeg, L.H. Annu. Rev. Microbiol. (1997) [Pubmed]
  4. beta-D-glucosyl-hydroxymethyluracil is a conserved DNA modification in kinetoplastid protozoans and is abundant in their telomeres. van Leeuwen, F., Taylor, M.C., Mondragon, A., Moreau, H., Gibson, W., Kieft, R., Borst, P. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  5. Characterization of glucose transport and cloning of a hexose transporter gene in Trypanosoma cruzi. Tetaud, E., Bringaud, F., Chabas, S., Barrett, M.P., Baltz, T. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  6. The single dynamin-like protein of Trypanosoma brucei regulates mitochondrial division and is not required for endocytosis. Morgan, G.W., Goulding, D., Field, M.C. J. Biol. Chem. (2004) [Pubmed]
  7. Molecular analysis of glyceraldehyde-3-phosphate dehydrogenase in Trypanoplasma borelli: an evolutionary scenario of subcellular compartmentation in kinetoplastida. Wiemer, E.A., Hannaert, V., van den IJssel, P.R., Van Roy, J., Opperdoes, F.R., Michels, P.A. J. Mol. Evol. (1995) [Pubmed]
  8. Conserved sequences in the U2 snRNA-encoding genes of Kinetoplastida do not include the putative branchpoint recognition region. Tschudi, C., Williams, S.P., Ullu, E. Gene (1990) [Pubmed]
  9. The alpha- and beta-tubulins of Toxoplasma gondii are encoded by single copy genes containing multiple introns. Nagel, S.D., Boothroyd, J.C. Mol. Biochem. Parasitol. (1988) [Pubmed]
  10. Trypanosoma vivax: evidence for only one RNA polymerase II largest subunit gene in a trypanosome which undergoes antigenic variation. Smith, J.L., Chapman, A.B., Agabian, N. Exp. Parasitol. (1993) [Pubmed]
  11. Molecular analysis of phosphoglycerate kinase in Trypanoplasma borreli and the evolution of this enzyme in kinetoplastida. Adjé, C.A., Opperdoes, F.R., Michels, P.A. Gene (1998) [Pubmed]
  12. Serological activity against galactosyl-alpha(1-3)galactose in sera from patients with several kinetoplastida infections. Avila, J.L., Rojas, M., Towbin, H. J. Clin. Microbiol. (1988) [Pubmed]
  13. Penetration of the salivary glands of Rhodnius domesticus Neiva & Pinto, 1923 (Hemiptera: Reduviidae) by Trypanosoma rangeli Tejera, 1920 (Protozoa: Kinetoplastida). Meirelles, R.M., Henriques-Pons, A., Soares, M.J., Steindel, M. Parasitol. Res. (2005) [Pubmed]
  14. Site-specific interactions of JBP with base and sugar moieties in duplex J-DNA. Evidence for both major and minor groove contacts. Sabatini, R., Meeuwenoord, N., van Boom, J.H., Borst, P. J. Biol. Chem. (2002) [Pubmed]
  15. A single enzyme catalyses formation of Trypanothione from glutathione and spermidine in Trypanosoma cruzi. Oza, S.L., Tetaud, E., Ariyanayagam, M.R., Warnon, S.S., Fairlamb, A.H. J. Biol. Chem. (2002) [Pubmed]
  16. The enzymes of purine salvage in Trypanosoma cruzi, Trypanosoma brucei and Leishmania mexicana. Davies, M.J., Ross, A.M., Gutteridge, W.E. Parasitology (1983) [Pubmed]
  17. Glucose uptake in Trypanosoma vivax and molecular characterization of its transporter gene. Waitumbi, J.N., Tetaud, E., Baltz, T. Eur. J. Biochem. (1996) [Pubmed]
  18. Chloroplast phosphoglycerate kinase from Euglena gracilis: endosymbiotic gene replacement going against the tide. Nowitzki, U., Gelius-Dietrich, G., Schwieger, M., Henze, K., Martin, W. Eur. J. Biochem. (2004) [Pubmed]
  19. Flavoprotein structure and mechanism. 5. Trypanothione reductase and lipoamide dehydrogenase as targets for a structure-based drug design. Krauth-Siegel, R.L., Schöneck, R. FASEB J. (1995) [Pubmed]
  20. Identification and functional characterization of thioredoxin from Trypanosoma brucei brucei. Reckenfelderbäumer, N., Lüdemann, H., Schmidt, H., Steverding, D., Krauth-Siegel, R.L. J. Biol. Chem. (2000) [Pubmed]
  21. Two linked genes of Leishmania infantum encode tryparedoxins localised to cytosol and mitochondrion. Castro, H., Sousa, C., Novais, M., Santos, M., Budde, H., Cordeiro-da-Silva, A., Flohé, L., Tomás, A.M. Mol. Biochem. Parasitol. (2004) [Pubmed]
  22. Glyoxalase II of African trypanosomes is trypanothione-dependent. Irsch, T., Krauth-Siegel, R.L. J. Biol. Chem. (2004) [Pubmed]
WikiGenes - Universities