The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cryptosporidium


High impact information on Cryptosporidium


Chemical compound and disease context of Cryptosporidium


Biological context of Cryptosporidium


Anatomical context of Cryptosporidium


Associations of Cryptosporidium with chemical compounds


Gene context of Cryptosporidium

  • In this study, we characterized the single-stranded DNA binding features of two distinct types (i.e. short and long) of RPA1 subunits from Cryptosporidium parvum (CpRPA1A and CpRPA1B) [29].
  • Phosphatidylinositol 3-kinase and frabin mediate Cryptosporidium parvum cellular invasion via activation of Cdc42 [30].
  • Interleukin-4 and transforming growth factor beta have opposing regulatory effects on gamma interferon-mediated inhibition of Cryptosporidium parvum reproduction [31].
  • An increase in mRNA levels for TNF and Tnfrsf1 in the bile ducts of Tnfsf5-/-(CD40 ligand or CD154 knockout) mice developing cholangitis following infection by Cryptosporidium parvum (CP) is accompanied by staining for TNFalpha in areas of inflammation [32].
  • Absence of weight loss during Cryptosporidium infection in susceptible mice deficient in Fas-mediated apoptosis [33].

Analytical, diagnostic and therapeutic context of Cryptosporidium


  1. Liver and bile duct pathology following Cryptosporidium parvum infection of immunodeficient mice. Stephens, J., Cosyns, M., Jones, M., Hayward, A. Hepatology (1999) [Pubmed]
  2. Spiramycin for treatment of Cryptosporidium enteritis. Sáez-Llorens, X. J. Infect. Dis. (1989) [Pubmed]
  3. Effect of Lactobacillus reuteri on intestinal resistance to Cryptosporidium parvum infection in a murine model of acquired immunodeficiency syndrome. Alak, J.I., Wolf, B.W., Mdurvwa, E.G., Pimentel-Smith, G.E., Adeyemo, O. J. Infect. Dis. (1997) [Pubmed]
  4. Nitazoxanide in the treatment of cryptosporidial diarrhea and other intestinal parasitic infections associated with acquired immunodeficiency syndrome in tropical Africa. Doumbo, O., Rossignol, J.F., Pichard, E., Traore, H.A., Dembele, T.M., Diakite, M., Traore, F., Diallo, D.A. Am. J. Trop. Med. Hyg. (1997) [Pubmed]
  5. Alcohol and murine acquired immunodeficiency syndrome suppression of resistance to Cryptosporidium parvum infection during modulation of cytokine production. Alak, J.I., Shahbazian, M., Huang, D.S., Wang, Y., Darban, H., Jenkins, E.M., Watson, R.R. Alcohol. Clin. Exp. Res. (1993) [Pubmed]
  6. Biliary cryptosporidiosis in HIV-infected people after the waterborne outbreak of cryptosporidiosis in Milwaukee. Vakil, N.B., Schwartz, S.M., Buggy, B.P., Brummitt, C.F., Kherellah, M., Letzer, D.M., Gilson, I.H., Jones, P.G. N. Engl. J. Med. (1996) [Pubmed]
  7. Cryptosporidium parvum invasion of biliary epithelia requires host cell tyrosine phosphorylation of cortactin via c-Src. Chen, X.M., Huang, B.Q., Splinter, P.L., Cao, H., Zhu, G., McNiven, M.A., LaRusso, N.F. Gastroenterology (2003) [Pubmed]
  8. Mannose-binding lectin is a component of innate mucosal defense against Cryptosporidium parvum in AIDS. Kelly, P., Jack, D.L., Naeem, A., Mandanda, B., Pollok, R.C., Klein, N.J., Turner, M.W., Farthing, M.J. Gastroenterology (2000) [Pubmed]
  9. Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion. Chen, X.M., O'Hara, S.P., Huang, B.Q., Splinter, P.L., Nelson, J.B., LaRusso, N.F. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  10. Genetic complementation in apicomplexan parasites. Striepen, B., White, M.W., Li, C., Guerini, M.N., Malik, S.B., Logsdon, J.M., Liu, C., Abrahamsen, M.S. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  11. Azithromycin therapy for Cryptosporidium parvum infection in four children infected with human immunodeficiency virus. Hicks, P., Zwiener, R.J., Squires, J., Savell, V. J. Pediatr. (1996) [Pubmed]
  12. Evaluation of quantitative latex agglutination for detection of Cryptosporidium parvum, E. coli K99, and rotavirus in calf feces. Nussbaum, D.J., Salord, J.R., Rimmele, D.D. J. Vet. Diagn. Invest. (1999) [Pubmed]
  13. Inability of interferon-gamma and aminoguanidine to alter Cryptosporidium parvum infection in mice with severe combined immunodeficiency. Kuhls, T.L., Mosier, D.A., Abrams, V.L., Crawford, D.L., Greenfield, R.A. J. Parasitol. (1994) [Pubmed]
  14. Evolution of Cryptosporidium parvum lactate dehydrogenase from malate dehydrogenase by a very recent event of gene duplication. Madern, D., Cai, X., Abrahamsen, M.S., Zhu, G. Mol. Biol. Evol. (2004) [Pubmed]
  15. Differentiating human from animal isolates of Cryptosporidium parvum. Sulaiman, I.M., Xiao, L., Yang, C., Escalante, L., Moore, A., Beard, C.B., Arrowood, M.J., Lal, A.A. Emerging Infect. Dis. (1998) [Pubmed]
  16. A new restriction fragment length polymorphism from Cryptosporidium parvum identifies genetically heterogeneous parasite populations and genotypic changes following transmission from bovine to human hosts. Carraway, M., Tzipori, S., Widmer, G. Infect. Immun. (1997) [Pubmed]
  17. Specific serum and local antibody responses against Cryptosporidium parvum during medication of calves with halofuginone lactate. Peeters, J.E., Villacorta, I., Naciri, M., Vanopdenbosch, E. Infect. Immun. (1993) [Pubmed]
  18. Experimental intrauterine infection of adult BALB/c mice with Cryptosporidium sp. Liebler, E.M., Pohlenz, J.F., Woodmansee, D.B. Infect. Immun. (1986) [Pubmed]
  19. Protective monoclonal antibody defines a circumsporozoite-like glycoprotein exoantigen of Cryptosporidium parvum sporozoites and merozoites. Riggs, M.W., Stone, A.L., Yount, P.A., Langer, R.C., Arrowood, M.J., Bentley, D.L. J. Immunol. (1997) [Pubmed]
  20. Calcium regulation in protozoan parasites. Moreno, S.N., Docampo, R. Curr. Opin. Microbiol. (2003) [Pubmed]
  21. Intact intestinal mRNAs and intestinal epithelial cell esterase, but not Cryptosporidium parvum, reach mesenteric lymph nodes of infected mice. Ponnuraj, E.M., Hayward, A.R. J. Immunol. (2001) [Pubmed]
  22. Chemoprophylaxis of Cryptosporidium parvum infection with paromomycin in kids and immunological study. Mancassola, R., Reperant, J.M., Naciri, M., Chartier, C. Antimicrob. Agents Chemother. (1995) [Pubmed]
  23. Human intestinal epithelial cells respond to Cryptosporidium parvum infection with increased prostaglandin H synthase 2 expression and prostaglandin E2 and F2alpha production. Laurent, F., Kagnoff, M.F., Savidge, T.C., Naciri, M., Eckmann, L. Infect. Immun. (1998) [Pubmed]
  24. Kinetic characterization of bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis: a paradigm shift for ts activity and channeling behavior. Atreya, C.E., Anderson, K.S. J. Biol. Chem. (2004) [Pubmed]
  25. Tumour necrosis factor alpha changes porcine intestinal ion transport through a paracrine mechanism involving prostaglandins. Kandil, H.M., Berschneider, H.M., Argenzio, R.A. Gut (1994) [Pubmed]
  26. Vapreotide, a somatostatin analogue, in cryptosporidiosis and other AIDS-related diarrhoeal diseases. Girard, P.M., Goldschmidt, E., Vittecoq, D., Massip, P., Gastiaburu, J., Meyohas, M.C., Coulaud, J.P., Schally, A.V. AIDS (1992) [Pubmed]
  27. Synthetic DNA minor groove-binding drugs. Reddy, B.S., Sondhi, S.M., Lown, J.W. Pharmacol. Ther. (1999) [Pubmed]
  28. Efficacy of nitazoxanide against Cryptosporidium parvum in cell culture and in animal models. Theodos, C.M., Griffiths, J.K., D'Onfro, J., Fairfield, A., Tzipori, S. Antimicrob. Agents Chemother. (1998) [Pubmed]
  29. The protozoan parasite Cryptosporidium parvum possesses two functionally and evolutionarily divergent replication protein A large subunits. Rider, S.D., Cai, X., Sullivan, W.J., Smith, A.T., Radke, J., White, M., Zhu, G. J. Biol. Chem. (2005) [Pubmed]
  30. Phosphatidylinositol 3-kinase and frabin mediate Cryptosporidium parvum cellular invasion via activation of Cdc42. Chen, X.M., Splinter, P.L., Tietz, P.S., Huang, B.Q., Billadeau, D.D., LaRusso, N.F. J. Biol. Chem. (2004) [Pubmed]
  31. Interleukin-4 and transforming growth factor beta have opposing regulatory effects on gamma interferon-mediated inhibition of Cryptosporidium parvum reproduction. Lean, I.S., McDonald, S.A., Bajaj-Elliott, M., Pollok, R.C., Farthing, M.J., McDonald, V. Infect. Immun. (2003) [Pubmed]
  32. Requirement for TNF-Tnfrsf1 signalling for sclerosing cholangitis in mice chronically infected by Cryptosporidium parvum. Ponnuraj, E.M., Hayward, A.R. Clin. Exp. Immunol. (2002) [Pubmed]
  33. Absence of weight loss during Cryptosporidium infection in susceptible mice deficient in Fas-mediated apoptosis. Motta, I., Gissot, M., Kanellopoulos, J.M., Ojcius, D.M. Microbes Infect. (2002) [Pubmed]
  34. Nested polymerase chain reaction for amplification of the Cryptosporidium oocyst wall protein gene. Pedraza-Díaz, S., Amar, C., Nichols, G.L., McLauchlin, J. Emerging Infect. Dis. (2001) [Pubmed]
  35. Activity of buforin II alone and in combination with azithromycin and minocycline against Cryptosporidium parvum in cell culture. Giacometti, A., Cirioni, O., Del Prete MS, n.u.l.l., Barchiesi, F., Fineo, A., Scalise, G. J. Antimicrob. Chemother. (2001) [Pubmed]
  36. Detection of Cryptosporidium parvum in soil extracts. Walker, M., Redelman, D. Appl. Environ. Microbiol. (2004) [Pubmed]
  37. Effects of Cryptosporidium parvum infection in Peruvian children: growth faltering and subsequent catch-up growth. Checkley, W., Epstein, L.D., Gilman, R.H., Black, R.E., Cabrera, L., Sterling, C.R. Am. J. Epidemiol. (1998) [Pubmed]
WikiGenes - Universities