The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Raptors


High impact information on Raptors

  • The Cape Verde kite (Milvus milvus fasciicauda) is considered to be one of the rarest birds of prey in the world and at significant risk of extinction [2].
  • We assessed phylogenetic relationships for birds of prey in the family Accipitridae using molecular sequence from two mitochondrial genes (1047 bases ND2 and 1041 bases cyt-b) and one nuclear intron (1074 bases beta-fibrinogen intron 7) [3].
  • As a large raptor, the goshawk apparently has a competitive advantage over smaller ones, and may have an ever-increasing impact on smaller birds of prey, if there is a lack of sheltered forests inducing competition for the available nest sites [4].
  • Raptors lack lower-field myopia [5].
  • Like many diurnal raptors, the American kestrel or sparrow hawk, Falco sparverius, possesses two foveae in each eye [6].

Biological context of Raptors


Anatomical context of Raptors


Associations of Raptors with chemical compounds

  • The isthmo-optic nucleus (NIO) at the origin of the retinopetal pathway was examined in 12 birds of prey (strigiforms and falconiforms) using cytoarchitectonic methods and after the intraocular injection of the regrograde tracers Rhodamine beta-isothiocyanate and Fast blue [12].
  • The purpose of this study was to monitor exposure to lead in four species of raptors in Southeastern Spain (Murcia Region) [13].
  • Intravenously administered ketamine HCl and diazepam for anesthesia of raptors [14].
  • Identifying pollution hot spots from polychlorinated biphenyl residues in birds of prey [15].
  • The possibility that fenthion, an organophosphorus pesticide, could represent a secondary poisoning hazard to birds of prey was tested, using American kestrels (Falco sparverius) and house sparrows (Passer domesticus) as representative models of a naturally occurring predator-prey interaction [16].

Gene context of Raptors

  • In order to establish the level of these enzymes and to have reference values for their normal activities, total plasma cholinesterase (ChE), AChE and BChE activities, and plasma CbE activity were determined in 729 European raptors representing 20 species, four families, and two orders [17].
  • Haematozoa of birds of prey in Great Britain [18].
  • Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination [19].
  • Merlin and Sparrowhawk eggs were the highest contaminated with chlorinated pesticides (average sum pesticide concentration: 3.0 and 4.3 microg/g w.w.). For the first time, the content of chlorobornanes was determined in Norwegian birds of prey eggs [20].
  • None of the data suggest that any of the birds of prey had died of DDT or DDT metabolite poisoning [21].

Analytical, diagnostic and therapeutic context of Raptors


  1. Chronic fatigue and immune dysfunction syndrome associated with Staphylococcus spp. bacteraemia responsive to thiacetarsamide sodium in eight birds of prey. Tarello, W. J. Vet. Med. B Infect. Dis. Vet. Public Health (2001) [Pubmed]
  2. Prioritizing species conservation: does the Cape Verde kite exist? Johnson, J.A., Watson, R.T., Mindell, D.P. Proc. Biol. Sci. (2005) [Pubmed]
  3. Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Lerner, H.R., Mindell, D.P. Mol. Phylogenet. Evol. (2005) [Pubmed]
  4. Competitive interactions among raptors in boreal forests. Hakkarainen, H., Mykrä, S., Kurki, S., Tornberg, R., Jungell, S. Oecologia (2004) [Pubmed]
  5. Raptors lack lower-field myopia. Murphy, C.J., Howland, M., Howland, H.C. Vision Res. (1995) [Pubmed]
  6. Retinotopic representation of the bifoveate eye of the kestrel (Falco spraverius) on the optic tectum. Frost, B.J., Wise, L.Z., Morgan, B., Bird, D. Vis. Neurosci. (1990) [Pubmed]
  7. Pharmacokinetics of gentamicin in birds of prey. Bird, J.E., Miller, K.W., Larson, A.A., Duke, G.E. Am. J. Vet. Res. (1983) [Pubmed]
  8. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators. II. Calculations for dichlorodiphenyltrichloroethane (DDT) and cadmium. Jongbloed, R.H., Traas, T.P., Luttik, R. Ecotoxicol. Environ. Saf. (1996) [Pubmed]
  9. Hematocrit and blood chemistry values in captive raptors (Gyps fulvus, Buteo buteo, Milvus migrans, Aquila heliaca). Ferrer, M., García-Rodríguez, T., Carrillo, J.C., Castroviejo, J. Comparative biochemistry and physiology. A, Comparative physiology. (1987) [Pubmed]
  10. Foveal topography in the optic nerve and primary visual centers in Falconiforms. Inzunza, O., Bravo, H. Anat. Rec. (1993) [Pubmed]
  11. Captivity diets alter egg yolk lipids of a bird of prey (the American kestrel) and of a galliforme (the red-legged partridge). Surai, P.F., Speake, B.K., Bortolotti, G.R., Negro, J.J. Physiol. Biochem. Zool. (2001) [Pubmed]
  12. Nuclear origin of the centrifugal visual pathway in birds of prey. Weidner, C., Repérant, J., Desroches, A.M., Miceli, D., Vesselkin, N.P. Brain Res. (1987) [Pubmed]
  13. Environmental exposure and distribution of lead in four species of raptors in Southeastern Spain. García-Fernández, A.J., Motas-Guzmán, M., Navas, I., María-Mojica, P., Luna, A., Sánchez-García, J.A. Arch. Environ. Contam. Toxicol. (1997) [Pubmed]
  14. Intravenously administered ketamine HCl and diazepam for anesthesia of raptors. Redig, P.T., Duke, G.E. J. Am. Vet. Med. Assoc. (1976) [Pubmed]
  15. Identifying pollution hot spots from polychlorinated biphenyl residues in birds of prey. Broughton, R.K., Osborn, D., Shore, R.F., Wienburg, C.L., Wadsworth, R.A. Environ. Toxicol. Chem. (2003) [Pubmed]
  16. Secondary poisoning hazard of fenthion to American kestrels. Hunt, K.A., Bird, D.M., Mineau, P., Shutt, L. Arch. Environ. Contam. Toxicol. (1991) [Pubmed]
  17. Plasma B-esterase activities in European raptors. Roy, C., Grolleau, G., Chamoulaud, S., Rivière, J.L. J. Wildl. Dis. (2005) [Pubmed]
  18. Haematozoa of birds of prey in Great Britain. Peirce, M.A., Cooper, J.E. Vet. Rec. (1977) [Pubmed]
  19. Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Dauwe, T., Bervoets, L., Pinxten, R., Blust, R., Eens, M. Environ. Pollut. (2003) [Pubmed]
  20. Organochlorines in egg samples from Norwegian birds of prey: congener-, isomer- and enantiomer specific considerations. Herzke, D., Kallenborn, R., Nygård, T. Sci. Total Environ. (2002) [Pubmed]
  21. Organochlorine pesticide residues in Florida birds of prey, 1969-76. Johnston, D.W. Pesticides monitoring journal. (1978) [Pubmed]
  22. Ocular lesions in free-living raptors. Murphy, C.J., Kern, T.J., McKeever, K., McKeever, L., MacCoy, D. J. Am. Vet. Med. Assoc. (1982) [Pubmed]
  23. A scanning electron microscope study of the luminal surface specializations in the blood vessels of the pecten oculi in a diurnal bird, the black kite (Milvus migrans). Kiama, S.G., Maina, J.N., Bhattacharjee, J., Weyrauch, K.D., Gehr, P. Ann. Anat. (1998) [Pubmed]
WikiGenes - Universities