The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

MYP3  -  myopia 3 (high grade, autosomal dominant)

Homo sapiens

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MYP3


Psychiatry related information on MYP3


High impact information on MYP3

  • X-linked congenital stationary night blindness (XLCSNB) is characterized by impaired scotopic vision with associated ocular symptoms such as myopia, hyperopia, nystagmus and reduced visual acuity [10].
  • Patients with complete CSNB show moderate to severe myopia, undetectable rod function and a normal cone response, whereas patients with incomplete CSNB show moderate myopia to hyperopia and subnormal but measurable rod and cone function [11].
  • X-linked congenital stationary night blindness (CSNB) is a recessive non-progressive retinal disorder characterized by night blindness, decreased visual acuity, myopia, nystagmus and strabismus [11].
  • This experimental refractive error has many features in common with human myopia: It is caused by progressive axial elongation of the eye, is often accompanied by fundus changes, and can only be induced before eye growth has been completed [12].
  • In M. mulatta, atropine is ineffective; furthermore, myopia develops when lids are sutured after interruption of the optic pathways [12].

Chemical compound and disease context of MYP3


Biological context of MYP3

  • A second locus for familial high myopia maps to chromosome 12q [1].
  • These results confirm genetic heterogeneity of myopia [1].
  • We conducted the present experiment to determine whether over-expressed IL-6 enhanced the tumorigenicity of a weakly tumorigenic rat bladder carcinoma, and whether it was sufficient to induce a tumorigenic phenotype in a non-tumorigenic, anchorage-dependent rat urothelial cell line, MYP3 [18].
  • An immortalized nontumorigenic rat urothelial cell line (MYP3) that strongly expresses wild-type (WT) p53 was transfected with a plasmid (pcDL-SR alpha-296) containing a rat WT p53 cDNA in antisense orientation [19].
  • Recently, the transforming growth beta-induced factor (TGIF) gene was reported to be a candidate gene for MYP2-associated high myopia in single-nucleotide polymorphism studies [20].

Anatomical context of MYP3


Associations of MYP3 with chemical compounds

  • Using rat (MYP3) and human (1T1) urothelial cells, cytotoxicity for trivalent arsenicals, sodium arsenite, monomethylarsonous acid (MMA(III)), and DMA(III) was demonstrated at 0.4-4.8 microM concentrations, whereas MMA(V), DMA(V), and TMAO were cytotoxic at millimolar concentrations [26].
  • Stickler and Marshall syndromes are dominantly inherited chondrodysplasias characterized by midfacial hypoplasia, high myopia, and sensorineural-hearing deficit [27].
  • AIMS: To evaluate the visual and fluorescein angiographic outcomes of photodynamic therapy (PDT) with verteporfin in patients with subfoveal choroidal neovascularisation (CNV) caused by pathologic myopia in the Chinese. METHODS: Prospective, non-comparative, two centre interventional study [28].
  • Transient myopia following metronidazole treatment for Trichomonas vaginalis [29].
  • High-grade exposure to chlorophenols, which are also contaminated by dioxins, gave an RR of 5.25 (95% CI = 1.69-16.34) [30].

Physical interactions of MYP3


Regulatory relationships of MYP3


Other interactions of MYP3

  • The purpose of this study was to determine whether DNA sequence variants in the human TGIF gene are causally related to MYP2-associated high myopia [20].
  • METHODS: Clinical examination and linkage analysis of both families using markers flanking the COL2A1 gene associated with Stickler syndrome type 1, the loci for Wagner disease/erosive vitreoretinopathy (5q14.3), high myopia (18p11.31 and 12q21-q23), and nonsyndromic congenital retinal nonattachment (10q21) [37].
  • Direct sequencing of the LPIN2 gene revealed 11 single nucleotide polymorphisms (SNPs) in myopia and unaffected individuals [38].
  • The VIP Study Group recommends verteporfin therapy for subfoveal CNV resulting from pathologic myopia based on both the 1- and 2-year results of this randomized clinical trial [13].
  • Three types of nonsyndromic high myopia, Stickler syndrome I, II, and III, Wagner syndrome, Knobloch syndrome, Goldmann-Favre dystrophy, and multiple vitreoretinopathies were excluded by linkage analysis [22].

Analytical, diagnostic and therapeutic context of MYP3

  • P3M6-10 and P3M6-12 (anchorage-independent but non-tumorigenic) and MYP3T6 (anchorage-independent and tumorigenic) were isolated from MYP3 after treatment with MNU in vitro [18].
  • On the basis of clinical, ultrasonographic, and OCT studies, the etiology of PCRA in this family does not seem to be attributable to vitreomacular traction or myopia [39].
  • RESULTS: Pedigree analysis revealed a three generation family with eight of eleven individuals affected by early onset lens dislocation, high myopia, typical facies, frontal bossing, flexion contractures, proximal interphalangeal (PIP) joint thickening, clinical corneal guttae, and glaucoma [40].
  • PURPOSE: To evaluate the visual and angiographic effects as well as optical coherence tomography findings after a new technique of ingrowth site treatment of subfoveal choroidal neovascularization (CNV) secondary to pathologic myopia with the use of indocyanine green (ICG)-mediated photothrombosis [41].
  • OBJECTIVES: The primary objective of this review was to examine the effects of laser photocoagulation for CNV associated with pathologic myopia [42].


  1. A second locus for familial high myopia maps to chromosome 12q. Young, T.L., Ronan, S.M., Alvear, A.B., Wildenberg, S.C., Oetting, W.S., Atwood, L.D., Wilkin, D.J., King, R.A. Am. J. Hum. Genet. (1998) [Pubmed]
  2. Cysteine substitutions in epidermal growth factor-like domains of fibrillin-1: distinct effects on biochemical and clinical phenotypes. Schrijver, I., Liu, W., Brenn, T., Furthmayr, H., Francke, U. Am. J. Hum. Genet. (1999) [Pubmed]
  3. Variation in the vitreous phenotype of Stickler syndrome can be caused by different amino acid substitutions in the X position of the type II collagen Gly-X-Y triple helix. Richards, A.J., Baguley, D.M., Yates, J.R., Lane, C., Nicol, M., Harper, P.S., Scott, J.D., Snead, M.P. Am. J. Hum. Genet. (2000) [Pubmed]
  4. A single amino acid substitution (G103D) in the type II collagen triple helix produces Kniest dysplasia. Wilkin, D.J., Bogaert, R., Lachman, R.S., Rimoin, D.L., Eyre, D.R., Cohn, D.H. Hum. Mol. Genet. (1994) [Pubmed]
  5. Clinical homogeneity and genetic heterogeneity in Weill-Marchesani syndrome. Faivre, L., Dollfus, H., Lyonnet, S., Alembik, Y., Mégarbané, A., Samples, J., Gorlin, R.J., Alswaid, A., Feingold, J., Le Merrer, M., Munnich, A., Cormier-Daire, V. Am. J. Med. Genet. A (2003) [Pubmed]
  6. Genes for super-intelligence? Sofaer, J.A., Emery, A.E. J. Med. Genet. (1981) [Pubmed]
  7. Optical compensation for night myopia based on dark focus and CA/C ratio. Kotulak, J.C., Morse, S.E., Rabin, J.C. Invest. Ophthalmol. Vis. Sci. (1995) [Pubmed]
  8. Is there improvement of "vascular depression" after carotid artery stent placement? Mlekusch, W., Mlekusch, I., Minar, E., Haumer, M., Kopp, C.W., Ahmadi, R., Lehrner, J., Schillinger, M. Radiology. (2006) [Pubmed]
  9. Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Bechara, A., Dolan, S., Hindes, A. Neuropsychologia. (2002) [Pubmed]
  10. The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Pusch, C.M., Zeitz, C., Brandau, O., Pesch, K., Achatz, H., Feil, S., Scharfe, C., Maurer, J., Jacobi, F.K., Pinckers, A., Andreasson, S., Hardcastle, A., Wissinger, B., Berger, W., Meindl, A. Nat. Genet. (2000) [Pubmed]
  11. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Bech-Hansen, N.T., Naylor, M.J., Maybaum, T.A., Pearce, W.G., Koop, B., Fishman, G.A., Mets, M., Musarella, M.A., Boycott, K.M. Nat. Genet. (1998) [Pubmed]
  12. An animal model of myopia. Raviola, E., Wiesel, T.N. N. Engl. J. Med. (1985) [Pubmed]
  13. Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia: 2-year results of a randomized clinical trial--VIP report no. 3. Blinder, K.J., Blumenkranz, M.S., Bressler, N.M., Bressler, S.B., Donato, G., Lewis, H., Lim, J.I., Menchini, U., Miller, J.W., Mones, J.M., Potter, M.J., Pournaras, C., Reaves, A., Rosenfeld, P., Schachat, A.P., Schmidt-Erfurth, U., Sickenberg, M., Singerman, L.J., Slakter, J.S., Strong, H.A., Virgili, G., Williams, G.A. Ophthalmology (2003) [Pubmed]
  14. Do aspirin-like analgesics protect against cataract? A case-control study. van Heyningen, R., Harding, J.J. Lancet (1986) [Pubmed]
  15. The neurotoxicity of antibacterial agents. Snavely, S.R., Hodges, G.R. Ann. Intern. Med. (1984) [Pubmed]
  16. Randomized study to evaluate the use of high-dose therapy as part of primary treatment for "aggressive" lymphoma. Kaiser, U., Uebelacker, I., Abel, U., Birkmann, J., Trümper, L., Schmalenberg, H., Karakas, T., Metzner, B., Hossfeld, D.K., Bischoff, H.G., Franke, A., Reiser, M., Müller, P., Mantovani, L., Grundeis, M., Rothmann, F., von Seydewitz, C.U., Mesters, R.M., Steinhauer, E.U., Krahl, D., Schumacher, K., Kneba, M., Baudis, M., Schmitz, N., Pfab, R., Köppler, H., Parwaresch, R., Pfreundschuh, M., Havemann, K. J. Clin. Oncol. (2002) [Pubmed]
  17. High-grade endometrial carcinoma in tamoxifen-treated breast cancer patients. Magriples, U., Naftolin, F., Schwartz, P.E., Carcangiu, M.L. J. Clin. Oncol. (1993) [Pubmed]
  18. Effect of transfected interleukin-6 in non-tumorigenic and tumorigenic rat urothelial cell lines. Okamoto, M., Oyasu, R. Int. J. Cancer (1996) [Pubmed]
  19. Antisense RNA-mediated reduction of p53 induces malignant phenotype in nontumorigenic rat urothelial cells. Okamoto, M., Hattori, K., Fujimoto, K., Tanaka, Y., Gloosby, C.L., Oyasu, R. Carcinogenesis (1998) [Pubmed]
  20. Sequence variants in the transforming growth beta-induced factor (TGIF) gene are not associated with high myopia. Scavello, G.S., Paluru, P.C., Ganter, W.R., Young, T.L. Invest. Ophthalmol. Vis. Sci. (2004) [Pubmed]
  21. A comparative histologic study of the fibrillin microfibrillar system in the lens capsule of normal subjects and subjects with Marfan syndrome. Mir, S., Wheatley, H.M., Hussels, I.E., Whittum-Hudson, J.A., Traboulsi, E.I. Invest. Ophthalmol. Vis. Sci. (1998) [Pubmed]
  22. Clinical description and exclusion of candidate genes in a novel autosomal recessively inherited vitreoretinal dystrophy. Sarra, G.M., Weigell-Weber, M., Kotzot, D., Niemeyer, G., Messmer, E., Hergersberg, M. Arch. Ophthalmol. (2003) [Pubmed]
  23. Pathologic myopia and choroidal neovascularization. Hotchkiss, M.L., Fine, S.L. Am. J. Ophthalmol. (1981) [Pubmed]
  24. COL2A1 exon 2 mutations: relevance to the Stickler and Wagner syndromes. Richards, A.J., Martin, S., Yates, J.R., Scott, J.D., Baguley, D.M., Pope, F.M., Snead, M.P. The British journal of ophthalmology. (2000) [Pubmed]
  25. Diastolic subclinical primary alterations in Marfan syndrome and Marfan-related disorders. Porciani, M.C., Giurlani, L., Chelucci, A., Pepe, G., Giusti, B.H., Brunelli, T., Attanasio, M., Martinucci, P., Fattrori, R., Abbatea, R., Gensini, G.F. Clinical cardiology. (2002) [Pubmed]
  26. Possible role of dimethylarsinous acid in dimethylarsinic acid-induced urothelial toxicity and regeneration in the rat. Cohen, S.M., Arnold, L.L., Uzvolgyi, E., Cano, M., St John, M., Yamamoto, S., Lu, X., Le, X.C. Chem. Res. Toxicol. (2002) [Pubmed]
  27. Splicing mutations of 54-bp exons in the COL11A1 gene cause Marshall syndrome, but other mutations cause overlapping Marshall/Stickler phenotypes. Annunen, S., Körkkö, J., Czarny, M., Warman, M.L., Brunner, H.G., Kääriäinen, H., Mulliken, J.B., Tranebjaerg, L., Brooks, D.G., Cox, G.F., Cruysberg, J.R., Curtis, M.A., Davenport, S.L., Friedrich, C.A., Kaitila, I., Krawczynski, M.R., Latos-Bielenska, A., Mukai, S., Olsen, B.R., Shinno, N., Somer, M., Vikkula, M., Zlotogora, J., Prockop, D.J., Ala-Kokko, L. Am. J. Hum. Genet. (1999) [Pubmed]
  28. Photodynamic therapy with verteporfin for subfoveal choroidal neovascularisation of pathologic myopia in Chinese eyes: a prospective series of 1 and 2 year follow up. Lam, D.S., Chan, W.M., Liu, D.T., Fan, D.S., Lai, W.W., Chong, K.K. The British journal of ophthalmology. (2004) [Pubmed]
  29. Transient myopia following metronidazole treatment for Trichomonas vaginalis. Grinbaum, A., Ashkenazi, I., Avni, I., Blumenthal, M. JAMA (1992) [Pubmed]
  30. Exposure to dioxins as a risk factor for soft tissue sarcoma: a population-based case-control study. Eriksson, M., Hardell, L., Adami, H.O. J. Natl. Cancer Inst. (1990) [Pubmed]
  31. Regulation of eye size by the retinal basement membrane and vitreous body. Halfter, W., Winzen, U., Bishop, P.N., Eller, A. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  32. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression. Jobling, A.I., Nguyen, M., Gentle, A., McBrien, N.A. J. Biol. Chem. (2004) [Pubmed]
  33. Interferon regulatory factor expression in human breast cancer. Doherty, G.M., Boucher, L., Sorenson, K., Lowney, J. Ann. Surg. (2001) [Pubmed]
  34. High-grade and hormone-treated prostate cancer express high levels of thymidylate synthase. Inoue, T., Segawa, T., Shiraishi, T., Yamada, T., Kinukawa, N., Yoshida, T., Toda, Y., Shimizu, Y., Nakamura, E., Kinoshita, H., Kamoto, T., Ogawa, O. BJU Int. (2006) [Pubmed]
  35. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew. Guggenheim, J.A., McBrien, N.A. Invest. Ophthalmol. Vis. Sci. (1996) [Pubmed]
  36. Basic fibroblast growth factor suppresses retinal neuronal apoptosis in form-deprivation myopia in chicks. Mao, J., Liu, S., Wen, D., Tan, X., Fu, C. Curr. Eye Res. (2006) [Pubmed]
  37. Autosomal dominant rhegmatogenous retinal detachment associated with an Arg453Ter mutation in the COL2A1 gene. Go, S.L., Maugeri, A., Mulder, J.J., van Driel, M.A., Cremers, F.P., Hoyng, C.B. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  38. Evaluation of Lipin 2 as a candidate gene for autosomal dominant 1 high-grade myopia. Zhou, J., Young, T.L. Gene (2005) [Pubmed]
  39. Posterior chorioretinal atrophy and vitreous phenotype in a family with Stickler syndrome from a mutation in the COL2A1 gene. Vu, C.D., Brown, J., Körkkö, J., Ritter, R., Edwards, A.O. Ophthalmology (2003) [Pubmed]
  40. Juvenile bilateral lens dislocation and glaucoma associated with a novel mutation in the fibrillin 1 gene. Challa, P., Hauser, M.A., Luna, C.C., Freedman, S.F., Pericak-Vance, M., Yang, J., McDonald, M.T., Allingham, R.R. Mol. Vis. (2006) [Pubmed]
  41. Selective occlusion of subfoveal choroidal neovascularization in pathologic myopia using a new technique of ingrowth site treatment. Costa, R.A., Calucci, D., Teixeira, L.F., Cardillo, J.A., Bonomo, P.P. Am. J. Ophthalmol. (2003) [Pubmed]
  42. Laser photocoagulation for choroidal neovascularisation in pathologic myopia. Virgili, G., Menchini, F. Cochrane database of systematic reviews (Online) (2005) [Pubmed]
WikiGenes - Universities