The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Azorhizobium

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Azorhizobium

 

High impact information on Azorhizobium

 

Chemical compound and disease context of Azorhizobium

  • During lateral root base nodulation, the microsymbiont Azorhizobium caulinodans enters its host plant, Sesbania rostrata, via the formation of outer cortical infection pockets, a process that is characterized by a massive production of H(2)O(2) [10].
  • In culture under a 2% O2 atmosphere, Azorhizobium cytbd- cytcbb3- double mutants fixed N2 at 70% of wild-type rates, presumably reflecting cytaa3 and cytbo (and other) terminal oxidase activities [11].
  • Cloning of Azorhizobium caulinodans nicotinate catabolism genes and characterization of their importance in N2 fixation [12].
  • Assuming that the terminal oxidases function as do their homologs in other bacteria, Azorhizobium respiration simultaneously employs both quinol and cytc oxidases [13].
  • Poly-beta-hydroxybutyrate turnover in Azorhizobium caulinodans is required for growth and affects nifA expression [14].
 

Biological context of Azorhizobium

 

Gene context of Azorhizobium

  • The control of Azorhizobium caulinodans nifA expression by oxygen, ammonia and by the HF-I-like protein, NrfA [20].
  • Identification of nodSUIJ genes in Nod locus 1 of Azorhizobium caulinodans: evidence that nodS encodes a methyltransferase involved in Nod factor modification [21].
  • We have studied nodlJ of Azorhizobium caulinodans ORS571 by analysis of cell-associated and secreted radioactively labelled Nod factors in wild-type ORS571, a nodJ mutant and a complemented strain [2].
  • From the comparison of the nod box sequences of (brady)rhizobia with a more divergent nod box from Azorhizobium caulinodans, we now propose a modular build-up of the nod box with the sequence A-T-C-N9-G-A-T as the binding target of the NodD protein (the NodD box) [9].
  • The Azorhizobium caulinodans strain ORS571 nodulation genes nodSUIJ were located downstream from nodABC [21].

References

  1. Rhizobium leguminosarum bv. viciae contains a second fnr/fixK-like gene and an unusual fixL homologue. Patschkowski, T., Schlüter, A., Priefer, U.B. Mol. Microbiol. (1996) [Pubmed]
  2. Role of nodl and nodJ in lipo-chitooligosaccharide secretion in Azorhizobium caulinodans and Escherichia coli. Fernández-López, M., D'Haeze, W., Mergaert, P., Verplancke, C., Promé, J.C., Van Montagu, M., Holsters, M. Mol. Microbiol. (1996) [Pubmed]
  3. Involvement of fixLJ in the regulation of nitrogen fixation in Azorhizobium caulinodans. Kaminski, P.A., Elmerich, C. Mol. Microbiol. (1991) [Pubmed]
  4. Differentiation of O-acetyl and O-carbamoyl esters of N-acetyl-glucosamine by decomposition of their oxonium ions. Application to the structure of the nonreducing terminal residue of Nod factors. Treilhou, M., Ferro, M., Monteiro, C., Poinsot, V., Jabbouri, S., Kanony, C., Promé, D., Promé, J.C. J. Am. Soc. Mass Spectrom. (2000) [Pubmed]
  5. Mini-Mulac transposons with broad-host-range origins of conjugal transfer and replication designed for gene regulation studies in Rhizobiaceae. Ratet, P., Schell, J., de Bruijn, F.J. Gene (1988) [Pubmed]
  6. The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Geremia, R.A., Mergaert, P., Geelen, D., Van Montagu, M., Holsters, M. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  7. The expression of nifA in Azorhizobium caulinodans requires a gene product homologous to Escherichia coli HF-I, an RNA-binding protein involved in the replication of phage Q beta RNA. Kaminski, P.A., Desnoues, N., Elmerich, C. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  8. Three unusual modifications, a D-arabinosyl, an N-methyl, and a carbamoyl group, are present on the Nod factors of Azorhizobium caulinodans strain ORS571. Mergaert, P., Van Montagu, M., Promé, J.C., Holsters, M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  9. Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins. Goethals, K., Van Montagu, M., Holsters, M. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  10. Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata. D'Haeze, W., Glushka, J., De Rycke, R., Holsters, M., Carlson, R.W. Mol. Microbiol. (2004) [Pubmed]
  11. Azorhizobium caulinodans uses both cytochrome bd (quinol) and cytochrome cbb3 (cytochrome c) terminal oxidases for symbiotic N2 fixation. Kaminski, P.A., Kitts, C.L., Zimmerman, Z., Ludwig, R.A. J. Bacteriol. (1996) [Pubmed]
  12. Cloning of Azorhizobium caulinodans nicotinate catabolism genes and characterization of their importance in N2 fixation. Buckmiller, L.M., Lapointe, J.P., Ludwig, R.A. J. Bacteriol. (1991) [Pubmed]
  13. Azorhizobium caulinodans respires with at least four terminal oxidases. Kitts, C.L., Ludwig, R.A. J. Bacteriol. (1994) [Pubmed]
  14. Poly-beta-hydroxybutyrate turnover in Azorhizobium caulinodans is required for growth and affects nifA expression. Mandon, K., Michel-Reydellet, N., Encarnación, S., Kaminski, P.A., Leija, A., Cevallos, M.A., Elmerich, C., Mora, J. J. Bacteriol. (1998) [Pubmed]
  15. The Azorhizobium caulinodans nitrogen-fixation regulatory gene, nifA, is controlled by the cellular nitrogen and oxygen status. Ratet, P., Pawlowski, K., Schell, J., de Bruijn, F.J. Mol. Microbiol. (1989) [Pubmed]
  16. Elucidation of the complete Azorhizobium nicotinate catabolism pathway. Kitts, C.L., Lapointe, J.P., Lam, V.T., Ludwig, R.A. J. Bacteriol. (1992) [Pubmed]
  17. Interactive regulation of Azorhizobium nifA transcription via overlapping promoters. Loroch, A.I., Nguyen, B.G., Ludwig, R.A. J. Bacteriol. (1995) [Pubmed]
  18. Novel organization of the common nodulation genes in Rhizobium leguminosarum bv. phaseoli strains. Vázquez, M., Dávalos, A., de las Peñas, A., Sánchez, F., Quinto, C. J. Bacteriol. (1991) [Pubmed]
  19. Characterization of the ntrBC genes of Azospirillum brasilense Sp7: their involvement in the regulation of nitrogenase synthesis and activity. Liang, Y.Y., Arsène, F., Elmerich, C. Mol. Gen. Genet. (1993) [Pubmed]
  20. The control of Azorhizobium caulinodans nifA expression by oxygen, ammonia and by the HF-I-like protein, NrfA. Kaminski, P.A., Elmerich, C. Mol. Microbiol. (1998) [Pubmed]
  21. Identification of nodSUIJ genes in Nod locus 1 of Azorhizobium caulinodans: evidence that nodS encodes a methyltransferase involved in Nod factor modification. Geelen, D., Mergaert, P., Geremia, R.A., Goormachtig, S., Van Montagu, M., Holsters, M. Mol. Microbiol. (1993) [Pubmed]
 
WikiGenes - Universities