The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Fabaceae

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Fabaceae

  • Nodulation of legumes by Rhizobium: the recognized root [1]?
  • Foods that are high in fat and cholesterol, such as red meat, margarine, and eggs, were positively associated with endometrial cancer, whereas cereals, legumes, vegetables, and fruits, particularly those high in lutein, were inversely associated [2].
  • Colorectal cancer was found associated with dietary intake of total calories (RRs = 1.0, 1.6, 1.6, 2.6) and cholesterol (RRs = 1.0, 0.9, 1.7, 1.7) and a protective effect was associated with the intake of fibre from legumes (pulses) and folic acid [3].
  • Pseudomonas syringae pv. phaseolicola, which causes halo blight on various legumes, and pv. actinidiae, responsible for canker or leaf spot on actinidia plants, are known as phaseolotoxin producers, and the former possesses phaseolotoxin-resistant ornithine carbamoyltransferase (ROCT) which confers resistance to the toxin [4].
  • Sinorhizobium fredii USDA257, a symbiont of soybean and many other legumes, secretes proteins called Nops (nodulation outer proteins) into the extracellular environment upon flavonoid induction [5].
 

High impact information on Fabaceae

  • A tight metabolic association with rhizobial bacteria allows legumes to obtain nitrogen compounds by bacterial reduction of dinitrogen (N2) to ammonium (NH4+) [6].
  • Larvae of the bruchid beetle Caryedes brasiliensis feed exclusively on seeds of the Neotropical legume Dioclea megacarpa, which contains 13 percent L-canavanine by dry weight [7].
  • Intake of nonlegume green vegetables, assessed because of the high lectin content of legumes, was also protective (OR, 0.54; CI, 0.35-0.81), but this was not independent of galactose [8].
  • It is suggested that the precursors of the human lignans enterolactone and enterodiol formed by the intestinal microflora are to be found in fibre-rich foods such as grains, nuts, and legumes [9].
  • The gene rpl22, encoding chloroplast ribosomal protein CL22, is present in the chloroplast genome of all plants examined except legumes, while a functional copy of rpl22 is located in the nucleus of the legume pea [10].
 

Chemical compound and disease context of Fabaceae

 

Biological context of Fabaceae

  • Genetics of competition for nodulation of legumes [16].
  • We have recently reported the tumor cell growth inhibitory properties of a mixture of triterpenoid saponins obtained from an Australian desert tree (Leguminosae) Acacia victoriae (Bentham) [17].
  • Although many iron-chelating agents potentiate reactive oxygen formation and lipid peroxidation, phytic acid (abundant in edible legumes, cereals, and seeds) forms an iron chelate which greatly accelerates Fe2+-mediated oxygen reduction yet blocks iron-driven hydroxyl radical generation and suppresses lipid peroxidation [18].
  • Plant food intake (whole grains, refined grains, fruit, vegetables, nuts, or legumes) was inversely related to EBP after adjustment for age, sex, race, center, energy intake, cardiovascular disease risk factors, and other potential confounding factors [19].
  • Because inositol hexaphosphate (IP6) is a dietary phytochemical present in cereals, soy, legumes, and fiber-rich foods, we evaluated efficacy of IP6 against PCA growth and associated molecular events [20].
 

Anatomical context of Fabaceae

 

Associations of Fabaceae with chemical compounds

  • Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes [26].
  • In legumes, the synthesis of infection- and elicitor-inducible antimicrobial phytoalexins occurs via the isoflavonoid branch of the phenylpropanoid pathway [27].
  • Asparagine, the primary assimilation product from N2 fixation in temperate legumes and the predominant nitrogen transport product in many plant species, is synthesized via asparagine synthetase (AS; EC 6.3.5.4) [28].
  • We tested the ability of avicins, a family of triterpenoid saponins obtained from Acacia victoriae (Bentham) (Leguminosae: Mimosoideae), to inhibit chemically induced mouse skin carcinogenesis [29].
  • Canaline reductase performs at least three important functions for canavanine-synthesizing legumes [30].
 

Gene context of Fabaceae

  • The second hemoglobin gene, AHB2, represents a class of nonsymbiotic hemoglobin (class 2) related in sequence to the symbiotic hemoglobin genes of legumes and Casuarina [31].
  • Using a phylogenomic approach, we show that homologs of TCP1/CYCLOIDEA occur in legumes and may be divided into two main classes (LEGCYC group I and II), apparently the result of an early duplication, and each class is characterized by a typical amino acid signature in the TCP domain [32].
  • LjUr is in the cluster of amide-transport legumes even though L. japonicus bears determinate nodules [33].
  • Homologous cDNAs were found in several legumes, and the catalytic function of the Lotus japonicus HI4'OMT was verified, indicating that HI4'OMT is the enzyme of formononetin biosynthesis in general legumes [34].
  • NopL (formerly y4xL) of NGR234 is a putative symbiotic effector that modulates nodulation in legumes [35].
 

Analytical, diagnostic and therapeutic context of Fabaceae

References

  1. Nodulation of legumes by Rhizobium: the recognized root? Downie, J.A., Johnston, A.W. Cell (1986) [Pubmed]
  2. Diet, body size, physical activity, and the risk of endometrial cancer. Goodman, M.T., Hankin, J.H., Wilkens, L.R., Lyu, L.C., McDuffie, K., Liu, L.Q., Kolonel, L.N. Cancer Res. (1997) [Pubmed]
  3. Nutritional factors in colorectal cancer risk: a case-control study in Majorca. Benito, E., Stiggelbout, A., Bosch, F.X., Obrador, A., Kaldor, J., Mulet, M., Muñoz, N. Int. J. Cancer (1991) [Pubmed]
  4. Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S-23S rRNA intergenic spacer sequences. Sawada, H., Takeuchi, T., Matsuda, I. Appl. Environ. Microbiol. (1997) [Pubmed]
  5. Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Krishnan, H.B., Lorio, J., Kim, W.S., Jiang, G., Kim, K.Y., DeBoer, M., Pueppke, S.G. Mol. Plant Microbe Interact. (2003) [Pubmed]
  6. The composite genome of the legume symbiont Sinorhizobium meliloti. Galibert, F., Finan, T.M., Long, S.R., Puhler, A., Abola, P., Ampe, F., Barloy-Hubler, F., Barnett, M.J., Becker, A., Boistard, P., Bothe, G., Boutry, M., Bowser, L., Buhrmester, J., Cadieu, E., Capela, D., Chain, P., Cowie, A., Davis, R.W., Dreano, S., Federspiel, N.A., Fisher, R.F., Gloux, S., Godrie, T., Goffeau, A., Golding, B., Gouzy, J., Gurjal, M., Hernandez-Lucas, I., Hong, A., Huizar, L., Hyman, R.W., Jones, T., Kahn, D., Kahn, M.L., Kalman, S., Keating, D.H., Kiss, E., Komp, C., Lelaure, V., Masuy, D., Palm, C., Peck, M.C., Pohl, T.M., Portetelle, D., Purnelle, B., Ramsperger, U., Surzycki, R., Thebault, P., Vandenbol, M., Vorholter, F.J., Weidner, S., Wells, D.H., Wong, K., Yeh, K.C., Batut, J. Science (2001) [Pubmed]
  7. Degradation and detoxification of canavanine by a specialized seed predator. Rosenthal, G.A., Janzen, D.H., Dahlman, D.L. Science (1977) [Pubmed]
  8. Diet and colorectal cancer: an investigation of the lectin/galactose hypothesis. Evans, R.C., Fear, S., Ashby, D., Hackett, A., Williams, E., Van Der Vliet, M., Dunstan, F.D., Rhodes, J.M. Gastroenterology (2002) [Pubmed]
  9. Excretion of the lignans enterolactone and enterodiol and of equol in omnivorous and vegetarian postmenopausal women and in women with breast cancer. Adlercreutz, H., Fotsis, T., Heikkinen, R., Dwyer, J.T., Woods, M., Goldin, B.R., Gorbach, S.L. Lancet (1982) [Pubmed]
  10. Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. Gantt, J.S., Baldauf, S.L., Calie, P.J., Weeden, N.F., Palmer, J.D. EMBO J. (1991) [Pubmed]
  11. Citrate synthase mutants of Sinorhizobium fredii USDA257 form ineffective nodules with aberrant ultrastructure. Krishnan, H.B., Kim, W.S., Sun-Hyung, J., Kim, K.Y., Jiang, G. Appl. Environ. Microbiol. (2003) [Pubmed]
  12. Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Ma, W., Guinel, F.C., Glick, B.R. Appl. Environ. Microbiol. (2003) [Pubmed]
  13. Biosynthesis and degradation of nodule-specific Rhizobium loti compounds in Lotus nodules. Scott, D.B., Wilson, R., Shaw, G.J., Petit, A., Tempe, J. J. Bacteriol. (1987) [Pubmed]
  14. Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses. van Slooten, J.C., Bhuvanasvari, T.V., Bardin, S., Stanley, J. Mol. Plant Microbe Interact. (1992) [Pubmed]
  15. Nutrition and prostate cancer. Kolonel, L.N. Cancer Causes Control (1996) [Pubmed]
  16. Genetics of competition for nodulation of legumes. Triplett, E.W., Sadowsky, M.J. Annu. Rev. Microbiol. (1992) [Pubmed]
  17. Avicins: triterpenoid saponins from Acacia victoriae (Bentham) induce apoptosis by mitochondrial perturbation. Haridas, V., Higuchi, M., Jayatilake, G.S., Bailey, D., Mujoo, K., Blake, M.E., Arntzen, C.J., Gutterman, J.U. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  18. Phytic acid. A natural antioxidant. Graf, E., Empson, K.L., Eaton, J.W. J. Biol. Chem. (1987) [Pubmed]
  19. Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Steffen, L.M., Kroenke, C.H., Yu, X., Pereira, M.A., Slattery, M.L., Van Horn, L., Gross, M.D., Jacobs, D.R. Am. J. Clin. Nutr. (2005) [Pubmed]
  20. In vivo suppression of hormone-refractory prostate cancer growth by inositol hexaphosphate: induction of insulin-like growth factor binding protein-3 and inhibition of vascular endothelial growth factor. Singh, R.P., Sharma, G., Mallikarjuna, G.U., Dhanalakshmi, S., Agarwal, C., Agarwal, R. Clin. Cancer Res. (2004) [Pubmed]
  21. Intracellular gene transfer in action: dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. Adams, K.L., Song, K., Roessler, P.G., Nugent, J.M., Doyle, J.L., Doyle, J.J., Palmer, J.D. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  22. Heat-induced aggregation of Phaseolus vulgaris L. Proteins: an electron spin resonance study. Carbonaro, M., Nicoli, S., Musci, G. J. Agric. Food Chem. (1999) [Pubmed]
  23. Ogataea falcaomoraisii sp. nov., a sporogenous methylotrophic yeast from tree exudates. Morais, P.B., Teixeira, L.C., Bowles, J.M., Lachance, M.A., Rosa, C.A. FEMS Yeast Res. (2004) [Pubmed]
  24. The acetone soluble fraction from bark extract of Stryphnodendron adstringens (Mart.) coville inhibits gastric acid secretion and experimental gastric ulceration in rats. Martins, D.T., Lima, J.C., Rao, V.S. Phytotherapy research : PTR. (2002) [Pubmed]
  25. Intracellular translocation of phosphatidate phosphatase in maturing safflower seeds: a possible mechanism of feedforward control of triacylglycerol synthesis by fatty acids. Ichihara, K., Murota, N., Fujii, S. Biochim. Biophys. Acta (1990) [Pubmed]
  26. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Jung, W., Yu, O., Lau, S.M., O'Keefe, D.P., Odell, J., Fader, G., McGonigle, B. Nat. Biotechnol. (2000) [Pubmed]
  27. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants. Oommen, A., Dixon, R.A., Paiva, N.L. Plant Cell (1994) [Pubmed]
  28. Nitrogen assimilation in alfalfa: isolation and characterization of an asparagine synthetase gene showing enhanced expression in root nodules and dark-adapted leaves. Shi, L., Twary, S.N., Yoshioka, H., Gregerson, R.G., Miller, S.S., Samac, D.A., Gantt, J.S., Unkefer, P.J., Vance, C.P. Plant Cell (1997) [Pubmed]
  29. Avicins, a family of triterpenoid saponins from Acacia victoriae (Bentham), suppress H-ras mutations and aneuploidy in a murine skin carcinogenesis model. Hanausek, M., Ganesh, P., Walaszek, Z., Arntzen, C.J., Slaga, T.J., Gutterman, J.U. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  30. Purification and characterization of the higher plant enzyme L-canaline reductase. Rosenthal, G.A. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  31. Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Trevaskis, B., Watts, R.A., Andersson, C.R., Llewellyn, D.J., Hargrove, M.S., Olson, J.S., Dennis, E.S., Peacock, W.J. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  32. A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Citerne, H.L., Luo, D., Pennington, R.T., Coen, E., Cronk, Q.C. Plant Physiol. (2003) [Pubmed]
  33. Structural and expression analysis of uricase mRNA from Lotus japonicus. Takane, K., Tajima, S., Kouchi, H. Mol. Plant Microbe Interact. (2000) [Pubmed]
  34. cDNA cloning and biochemical characterization of S-adenosyl-L-methionine: 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway. Akashi, T., Sawada, Y., Shimada, N., Sakurai, N., Aoki, T., Ayabe, S. Plant Cell Physiol. (2003) [Pubmed]
  35. Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234. Bartsev, A.V., Boukli, N.M., Deakin, W.J., Staehelin, C., Broughton, W.J. FEBS Lett. (2003) [Pubmed]
  36. Oral administration of a soy extract improves endothelial dysfunction in ovariectomized rats. Catania, M.A., Crupi, A., Firenzuoli, F., Parisi, A., Sturiale, A., Squadrito, F., Caputi, A.P., Calapai, G. Planta Med. (2002) [Pubmed]
  37. Genetic engineering for high methionine grain legumes. Müntz, K., Christov, V., Saalbach, G., Saalbach, I., Waddell, D., Pickardt, T., Schieder, O., Wüstenhagen, T. Die Nahrung. (1998) [Pubmed]
  38. Effect of traditional, microwave and industrial cooking on inositol phosphate content in beans, chickpeas and lentils. Máñez, G., Alegría, A., Farré, R., Frígola, A. International journal of food sciences and nutrition. (2002) [Pubmed]
  39. Impact of fenoxycarb, a carbamate insect growth regulator, on some aquatic invertebrates abundant in mosquito breeding habitats. Miura, T., Takahashi, R.M. J. Am. Mosq. Control Assoc. (1987) [Pubmed]
  40. Latex and chickpea (Cicer arietinum) allergy: first description of a new association. Branco Ferreira, M., Pedro, E., Meneses Santos, J., Pereira dos Santos, M.C., Palma Carlos, M.L., Bartolomé, B., Palma Carlos, A.G. Allergie et immunologie. (2004) [Pubmed]
 
WikiGenes - Universities