The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Azospirillum


High impact information on Azospirillum

  • Nevertheless, the indole-3-pyruvate decarboxylase encoding ipdC gene is crucial in the overall IAA biosynthesis in Azospirillum [6].
  • In Azospirillum brasilense and H. seropedicae (alpha- and beta-subgroup, respectively), NifA is inactive in conditions of excess nitrogen [6].
  • Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps [7].
  • Azospirillum brasilense glutamate synthase (GltS) is the prototype of bacterial NADPH-dependent enzymes, a class of complex iron-sulfur flavoproteins essential in ammonia assimilation processes [8].
  • Glutamate synthase genes of the diazotroph Azospirillum brasilense. Cloning, sequencing, and analysis of functional domains [9].

Chemical compound and disease context of Azospirillum

  • The 35.8 kDa C-terminal module of Pel10A was shown to have 30 and 36% identities with the family 10 pectate lyases from Azospirillum irakense and an alkaliphilic strain of Bacillus sp. strain KSM-P15, respectively [10].
  • Here we report on the presence of sulfated lipopolysaccharide molecules in Azospirillum brasilense, a plant growth-promoting rhizosphere bacterium [11].
  • Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense [12].
  • Uptake hydrogenase activity in denitrifying Azospirillum brasilense grown anaerobically with nitrous oxide or nitrate [13].
  • Fructose uptake and catabolism in Azospirillum brasilense is dependent on three fructose-inducible enzymes (fru-enzymes): (i) enzyme I and (ii) enzyme II of the phosphoenolpyruvate:fructose phosphotransferase system and (iii) 1-phosphofructokinase [14].

Biological context of Azospirillum


Anatomical context of Azospirillum


Gene context of Azospirillum


Analytical, diagnostic and therapeutic context of Azospirillum


  1. Identification of a nifA-like regulatory gene of Azospirillum brasilense Sp7 expressed under conditions of nitrogen fixation and in the presence of air and ammonia. Liang, Y.Y., Kaminski, P.A., Elmerich, C. Mol. Microbiol. (1991) [Pubmed]
  2. Heterologous gene expression in an Escherichia coli population under starvation stress conditions. Fani, R., Gallo, R., Fancelli, S., Mori, E., Tamburini, E., Lazcano, A. J. Mol. Evol. (1998) [Pubmed]
  3. Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutations. Michiels, K.W., Vanderleyden, J., Van Gool, A.P., Signer, E.R. J. Bacteriol. (1988) [Pubmed]
  4. Purification and properties of the nitrogenase of Azospirillum amazonense. Song, S.D., Hartmann, A., Burris, R.H. J. Bacteriol. (1985) [Pubmed]
  5. Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon cascade mountain range. Widmer, F., Shaffer, B.T., Porteous, L.A., Seidler, R.J. Appl. Environ. Microbiol. (1999) [Pubmed]
  6. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. Steenhoudt, O., Vanderleyden, J. FEMS Microbiol. Rev. (2000) [Pubmed]
  7. Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism. Watanabe, S., Kodak, T., Makino, K. J. Biol. Chem. (2006) [Pubmed]
  8. Quaternary structure of Azospirillum brasilense NADPH-dependent glutamate synthase in solution as revealed by synchrotron radiation x-ray scattering. Petoukhov, M.V., Svergun, D.I., Konarev, P.V., Ravasio, S., van den Heuvel, R.H., Curti, B., Vanoni, M.A. J. Biol. Chem. (2003) [Pubmed]
  9. Glutamate synthase genes of the diazotroph Azospirillum brasilense. Cloning, sequencing, and analysis of functional domains. Pelanda, R., Vanoni, M.A., Perego, M., Piubelli, L., Galizzi, A., Curti, B., Zanetti, G. J. Biol. Chem. (1993) [Pubmed]
  10. Pectate lyase 10A from Pseudomonas cellulosa is a modular enzyme containing a family 2a carbohydrate-binding module. Brown, I.E., Mallen, M.H., Charnock, S.J., Davies, G.J., Black, G.W. Biochem. J. (2001) [Pubmed]
  11. The nodPQ genes in Azospirillum brasilense Sp7 are involved in sulfation of lipopolysaccharides. Vanbleu, E., Choudhury, B.P., Carlson, R.W., Vanderleyden, J. Environ. Microbiol. (2005) [Pubmed]
  12. Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. Vande Broek, A., Lambrecht, M., Eggermont, K., Vanderleyden, J. J. Bacteriol. (1999) [Pubmed]
  13. Uptake hydrogenase activity in denitrifying Azospirillum brasilense grown anaerobically with nitrous oxide or nitrate. Tibelius, K.H., Knowles, R. J. Bacteriol. (1984) [Pubmed]
  14. Regulation of fructose uptake and catabolism by succinate in Azospirillum brasilense. Mukherjee, A., Ghosh, S. J. Bacteriol. (1987) [Pubmed]
  15. Repressor mutant forms of the Azospirillum brasilense NtrC protein. Huergo, L.F., Assumpção, M.C., Souza, E.M., Steffens, M.B., Yates, M.G., Chubatsu, L.S., Pedrosa, F.O. Appl. Environ. Microbiol. (2004) [Pubmed]
  16. Regulatory mutation that controls nif expression and histidine transport in Azospirillum brasilense. Fischer, M., Levy, E., Geller, T. J. Bacteriol. (1986) [Pubmed]
  17. The salCAB operon of Azospirillum irakense, required for growth on salicin, is repressed by SalR, a transcriptional regulator that belongs to the Lacl/GalR family. Somers, E., Keijers, V., Ptacek, D., Halvorsen Ottoy, M., Srinivasan, M., Vanderleyden, J., Faure, D. Mol. Gen. Genet. (2000) [Pubmed]
  18. Cloning of histidine genes of Azospirillum brasilense: organization of the ABFH gene cluster and nucleotide sequence of the hisB gene. Fani, R., Bazzicalupo, M., Damiani, G., Bianchi, A., Schipani, C., Sgaramella, V., Polsinelli, M. Mol. Gen. Genet. (1989) [Pubmed]
  19. Characterization of three different nitrogen-regulated promoter regions for the expression of glnB and glnA in Azospirillum brasilense. de Zamaroczy, M., Delorme, F., Elmerich, C. Mol. Gen. Genet. (1990) [Pubmed]
  20. The interaction of 2,4-dichlorophenoxyacetic acid, ribosomes and polyamines in Azospirillum brasilense. Fabra, A., Giordano, W., Rivarola, V., Mori, G., Castro, S., Balegno, H. Toxicology (1993) [Pubmed]
  21. Effect of root exudates on the exopolysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress. Fischer, S.E., Miguel, M.J., Mori, G.B. FEMS Microbiol. Lett. (2003) [Pubmed]
  22. Glutamate synthase: identification of the NADPH-binding site by site-directed mutagenesis. Morandi, P., Valzasina, B., Colombo, C., Curti, B., Vanoni, M.A. Biochemistry (2000) [Pubmed]
  23. Cloning, nucleotide sequencing, and expression of the Azospirillum brasilense lon gene: involvement in iron uptake. Mori, E., Fulchieri, M., Indorato, C., Fani, R., Bazzicalupo, M. J. Bacteriol. (1996) [Pubmed]
  24. Nucleotide sequence of the gene encoding the nitrogenase iron protein (nifH) of Azospirillum brasilense and identification of a region controlling nifH transcription. Fani, R., Allotta, G., Bazzicalupo, M., Ricci, F., Schipani, C., Polsinelli, M. Mol. Gen. Genet. (1989) [Pubmed]
  25. NADPH/NADH-dependent cold-labile glutamate dehydrogenase in Azospirillum brasilense. Purification and properties. Maulik, P., Ghosh, S. Eur. J. Biochem. (1986) [Pubmed]
  26. Identification and characterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245. Steenhoudt, O., Keijers, V., Okon, Y., Vanderleyden, J. Arch. Microbiol. (2001) [Pubmed]
  27. Sequence analysis of the Azospirillum brasilense exoB gene, encoding UDP-glucose 4'-epimerase. De Troch, P., Keijers, V., Vanderleyden, J. Gene (1994) [Pubmed]
  28. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Costacurta, A., Keijers, V., Vanderleyden, J. Mol. Gen. Genet. (1994) [Pubmed]
  29. Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. Insights from quantum chemistry. Zakharova, E.A., Shcherbakov, A.A., Brudnik, V.V., Skripko, N.G., Bulkhin, N.S.h., Ignatov, V.V. Eur. J. Biochem. (1999) [Pubmed]
  30. Monitoring of cobalt(II) uptake and transformation in cells of the plant-associated soil bacterium Azospirillum brasilense using emission Mössbauer spectroscopy. Kamnev, A.A., Antonyuk, L.P., Kulikov, L.A., Perfiliev, Y.D. Biometals (2004) [Pubmed]
  31. Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and of the histidine operon. Grifoni, A., Bazzicalupo, M., Di Serio, C., Fancelli, S., Fani, R. FEMS Microbiol. Lett. (1995) [Pubmed]
WikiGenes - Universities