The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Sesbania

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sesbania

 

High impact information on Sesbania

  • To analyze the role of SymRK downstream of the epidermis, the water-tolerant legume Sesbania rostrata was used that has developed a nodulation strategy to circumvent root hair responses for bacterial invasion [5].
  • Thus, VPg is an activator of protease in Sesbania mosaic virus, and probably by this mechanism, the polyprotein processing could be regulated in planta [1].
  • Srchi24, a chitinase homolog lacking an essential glutamic acid residue for hydrolytic activity, is induced during nodule development on Sesbania rostrata [6].
  • The early nodulin gene SrEnod2 from Sesbania rostrata is inducible by cytokinin [7].
  • Knockout of an azorhizobial dTDP-L-rhamnose synthase affects lipopolysaccharide and extracellular polysaccharide production and disables symbiosis with Sesbania rostrata [8].
 

Chemical compound and disease context of Sesbania

  • Paradoxically, in O2 limited continuous culture, Azorhizobium cytbd oxidase is inactive below 3.6 microM dissolved O2 whereas in Sesbania rostrata symbiotic nodules, in which physiological, dissolved O2 is maintained at 10 to 20 nM, both Azorhizobium cytbd and cytcbb3 seem to contribute equally as respiratory terminal oxidases [9].
 

Biological context of Sesbania

  • Insertion mutations in epsilon 1 and delta 1 did not influence the induction of the nodulation operon, nodABCSUIJ, and had no effect on the nodulation behavior on Sesbania rostrata. lacZ fusion studies suggested that nodD is constitutively transcribed and that the promoter driving nodD expression overlaps with the ORF1 sequence [10].
  • This phylogeny was used to classify nine nodule isolates from Sesbania exasperata, S. punicea and S. sericea plants native to seasonally flooded areas of Venezuela, and compared with a PCR-RFLP analysis of rrs plus rrl genes and large maximum likelihood rrs and nifH phylogenies [11].
  • Rhizobium sp. SIN-1, a nitrogen-fixing symbiont of Sesbania aculeata and other tropical legumes, carries two copies of nodD, both on a sym plasmid [4].
 

Anatomical context of Sesbania

 

Associations of Sesbania with chemical compounds

  • The resulting mutants were found to be unable to fix nitrogen in the free-living state (Nif- in culture) or in stem or root nodules induced on Sesbania rostrata (Fix- in planta), and to be unable to grow aerobically in the presence of nitrate as sole nitrogen source (Ntr-) [13].
  • Chalcone reductase-homologous transcripts accumulate during development of stem-borne nodules on the tropical legume Sesbania rostrata [14].
  • Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus [15].
  • Justicidin B, a bioactive trace lignan from the seeds of Sesbania drummondii [16].
  • Kinetic analysis showed that a single dose of a beta-carotene supplement in the form of spirulina (Spirulina platensis) or agathi (Sesbania grandiflora) after the wash-out period caused an increase in the beta-carotene content after a lag period of 5-7 d, but the vitamin A levels during these periods were not significantly affected [17].
 

Gene context of Sesbania

  • Crystal structure of the serine protease domain of Sesbania mosaic virus polyprotein and mutational analysis of residues forming the S1-binding pocket [18].
  • Azorhizobium caulinodans ORS571, a bacterium capable of nodulating roots and stems of the tropical legume Sesbania rostrata, has been shown to have no nodD-like gene located immediately upstream from its common nodABC locus [19].
  • This is illustrated by the expression of the gusA gene under the control of a nod promoter in A. caulinodans nodulating stem-located infection sites on Sesbania rostrata [20].
  • Antioxidant defense in a lead accumulating plant, Sesbania drummondii [21].
 

Analytical, diagnostic and therapeutic context of Sesbania

  • 1. The HPLC separation of a water-soluble toxic fraction isolated from the seed of Sesbania vesicaria provided a potent antileukemic compound which was identified as sesbanimide (or sesbanimide A) [22].

References

  1. "Natively unfolded" VPg is essential for Sesbania mosaic virus serine protease activity. Satheshkumar, P.S., Gayathri, P., Prasad, K., Savithri, H.S. J. Biol. Chem. (2005) [Pubmed]
  2. The role of arginine-rich motif and beta-annulus in the assembly and stability of Sesbania mosaic virus capsids. Satheshkumar, P.S., Lokesh, G.L., Murthy, M.R., Savithri, H.S. J. Mol. Biol. (2005) [Pubmed]
  3. An Azorhizobium caulinodans ORS571 locus involved in lipopolysaccharide production and nodule formation on Sesbania rostrata stems and roots. Goethals, K., Leyman, B., Van Den Eede, G., Van Montagu, M., Holsters, M. J. Bacteriol. (1994) [Pubmed]
  4. Molecular cloning and characterization of nodD genes from Rhizobium sp. SIN-1, a nitrogen-fixing symbiont of Sesbania and other tropical legumes. Rana, D., Krishnan, H.B. Curr. Microbiol. (2002) [Pubmed]
  5. SrSymRK, a plant receptor essential for symbiosome formation. Capoen, W., Goormachtig, S., De Rycke, R., Schroeyers, K., Holsters, M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  6. Srchi24, a chitinase homolog lacking an essential glutamic acid residue for hydrolytic activity, is induced during nodule development on Sesbania rostrata. Goormachtig, S., Van de Velde, W., Lievens, S., Verplancke, C., Herman, S., De Keyser, A., Holsters, M. Plant Physiol. (2001) [Pubmed]
  7. The early nodulin gene SrEnod2 from Sesbania rostrata is inducible by cytokinin. Dehio, C., de Bruijn, F.J. Plant J. (1992) [Pubmed]
  8. Knockout of an azorhizobial dTDP-L-rhamnose synthase affects lipopolysaccharide and extracellular polysaccharide production and disables symbiosis with Sesbania rostrata. Gao, M., D'Haeze, W., De Rycke, R., Wolucka, B., Holsters, M. Mol. Plant Microbe Interact. (2001) [Pubmed]
  9. Azorhizobium caulinodans uses both cytochrome bd (quinol) and cytochrome cbb3 (cytochrome c) terminal oxidases for symbiotic N2 fixation. Kaminski, P.A., Kitts, C.L., Zimmerman, Z., Ludwig, R.A. J. Bacteriol. (1996) [Pubmed]
  10. The nodD locus from Azorhizobium caulinodans is flanked by two repetitive elements. Geelen, D., Goethals, K., Van Montagu, M., Holsters, M. Gene (1995) [Pubmed]
  11. Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Vinuesa, P., Silva, C., Lorite, M.J., Izaguirre-Mayoral, M.L., Bedmar, E.J., Martínez-Romero, E. Syst. Appl. Microbiol. (2005) [Pubmed]
  12. Assessment of smooth muscle function in Sesbania drummondii toxicosis in Gallus domesticus. Venugopalan, C.S., Flory, W., Tucker, T.A., Hebert, C.D., Strain, G.M. Am. J. Vet. Res. (1984) [Pubmed]
  13. Azorhizobium caulinodans nitrogen fixation (nif/fix) gene regulation: mutagenesis of the nifA -24/-12 promoter element, characterization of a ntrA(rpoN) gene, and derivation of a model. Stigter, J., Schneider, M., de Bruijn, F.J. Mol. Plant Microbe Interact. (1993) [Pubmed]
  14. Chalcone reductase-homologous transcripts accumulate during development of stem-borne nodules on the tropical legume Sesbania rostrata. Goormachtig, S., Lievens, S., Herman, S., Van Montagu, M., Holsters, M. Planta (1999) [Pubmed]
  15. Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus. Israr, M., Sahi, S.V., Jain, J. Arch. Environ. Contam. Toxicol. (2006) [Pubmed]
  16. Justicidin B, a bioactive trace lignan from the seeds of Sesbania drummondii. Hui, Y.H., Chang, C.J., McLaughlin, J.L., Powell, R.G. J. Nat. Prod. (1986) [Pubmed]
  17. Studies on the bioavailability of the provitamin A carotenoid, beta-carotene, using human exfoliated colonic epithelial cells. Gireesh, T., Nair, P.P., Sudhakaran, P.R. Br. J. Nutr. (2004) [Pubmed]
  18. Crystal structure of the serine protease domain of Sesbania mosaic virus polyprotein and mutational analysis of residues forming the S1-binding pocket. Gayathri, P., Satheshkumar, P.S., Prasad, K., Nair, S., Savithri, H.S., Murthy, M.R. Virology (2006) [Pubmed]
  19. Identification and characterization of a functional nodD gene in Azorhizobium caulinodans ORS571. Goethals, K., Van den Eeede, G., Van Montagu, M., Holsters, M. J. Bacteriol. (1990) [Pubmed]
  20. Broad host range and promoter selection vectors for bacteria that interact with plants. Van den Eede, G., Deblaere, R., Goethals, K., Van Montagu, M., Holsters, M. Mol. Plant Microbe Interact. (1992) [Pubmed]
  21. Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Ruley, A.T., Sharma, N.C., Sahi, S.V. Plant Physiol. Biochem. (2004) [Pubmed]
  22. Isolation of sesbanimide from the seed of Sesbania vesicaria. Kim, H.L., Krakoff, I.H., Newman, R.A. Gen. Pharmacol. (1992) [Pubmed]
 
WikiGenes - Universities