The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Abies

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on Abies

  • (E)-alpha-Bisabolene synthase is one of two wound-inducible sesquiterpene synthases of grand fir (Abies grandis), and the olefin product of this cyclization reaction is considered to be the precursor in Abies species of todomatuic acid, juvabione, and related insect juvenile hormone mimics [1].
  • In this report, we describe the first cDNA corresponding to a homeobox gene isolated from a gymnosperm, the HBK1 gene from the conifer Picea abies (L.) Karst (Norway spruce) [2].
  • Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase [3].
  • Abietadiene synthase from grand fir (Abies grandis). cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis [4].
  • (-)-Abietic acid, the principal diterpenoid resin acid of the wound-induced oleoresin secreted by grand fir (Abies grandis), is synthesized by the cyclization of geranylgeranyl diphosphate to (-)-abieta-7(8),13(14)-diene, followed by sequential three-step oxidation of the C-18 methyl group of the olefin to a carboxyl function [4].
 

Biological context of Abies

  • Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase [5].
  • A MADS-box-specific screening of a cDNA library from immature female strobili of the conifer Norway spruce, Picea abies (L.) Karst, resulted in cDNA clones that correspond to three different deficiens-agamous-like (dal) genes, dal1, dal2 and dal3 [6].
  • Expression of Chia4-Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases [7].
  • In this paper, we evaluated size-related variation in R(d), biomass distribution, and nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations of leaves, stems and roots of three cold-temperate tree species (Abies balsamea (L.) Mill, Acer rubrum L. and Pinus strobus L.) in a forest understory [8].
  • During the determination of LD50 values of extracts of Abies webbiana, it was observed that the methanol extract (MEAW) produces sedation of animals [9].
 

Anatomical context of Abies

 

Associations of Abies with chemical compounds

  • Stereochemistry of the cyclization-rearrangement of (+)-copalyl diphosphate to (-)-abietadiene catalyzed by recombinant abietadiene synthase from Abies grandis [11].
  • Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture [12].
  • [reaction: see text] We describe here a four-step semisynthetic method for the preparation of enantiomerically pure (-)-enterolactone starting from the readily available lignan hydroxymatairesinol from Norway spruce (Picea abies) [13].
  • We partially purified peroxidase isoform fractions from xylem extracts of a gymnosperm, Norway spruce (Picea abies (L.) Karst.), and an angiosperm, silver birch (Betula pendula Roth.), to determine the participation of xylem-localized peroxidases in polymerization of different types of lignin in vivo [14].
  • Three new lanostane-type triterpene lactones from the stem bark of Abies mariesii [15].
 

Gene context of Abies

  • New insights into allelic diversity of a phosphoeno/pyruvate carboxylase in the conifer Picea abies (l.) Karst [16].
  • We have isolated a cDNA clone corresponding to a histone H2A gene from Norway spruce, Picea abies (L.) Karst [17].
  • We have isolated cDNA clones corresponding to a cdc2 gene (cdc2Pa) from the conifer Norway spruce, Picea abies (L.) Karst [18].
  • (-)-(4S)-limonene synthase (LS) and (-)-(4S)-limonene/(-)-(1S, 5S)-alpha-pinene synthase (LPS) from grand fir (Abies grandis) exhibit nearly 91% sequence identity (93% similarity) at the amino acid level, yet produce very different mixtures of monoterpene olefins [19].
  • cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis) [20].
 

Analytical, diagnostic and therapeutic context of Abies

References

  1. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). Bohlmann, J., Crock, J., Jetter, R., Croteau, R. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  2. A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. Sundås-Larsson, A., Svenson, M., Liao, H., Engström, P. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  3. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase. Bohlmann, J., Steele, C.L., Croteau, R. J. Biol. Chem. (1997) [Pubmed]
  4. Abietadiene synthase from grand fir (Abies grandis). cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. Vogel, B.S., Wildung, M.R., Vogel, G., Croteau, R. J. Biol. Chem. (1996) [Pubmed]
  5. Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Fäldt, J., Martin, D., Miller, B., Rawat, S., Bohlmann, J. Plant Mol. Biol. (2003) [Pubmed]
  6. Conifer homologues to genes that control floral development in angiosperms. Tandre, K., Albert, V.A., Sundås, A., Engström, P. Plant Mol. Biol. (1995) [Pubmed]
  7. Expression of Chia4-Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases. Wiweger, M., Farbos, I., Ingouff, M., Lagercrantz, U., Von Arnold, S. J. Exp. Bot. (2003) [Pubmed]
  8. Dark respiration rate increases with plant size in saplings of three temperate tree species despite decreasing tissue nitrogen and nonstructural carbohydrates. Machado, J.L., Reich, P.B. Tree Physiol. (2006) [Pubmed]
  9. Synergistic effect of methanol extract of Abies webbiana leaves on sleeping time induced by standard sedatives in mice and anti-inflammatory activity of extracts in rats. Nayak, S.S., Ghosh, A.K., Debnath, B., Vishnoi, S.P., Jha, T. Journal of ethnopharmacology. (2004) [Pubmed]
  10. The enrichment of (18)O in leaf water under natural conditions. Förstel, H. Radiation and environmental biophysics. (1978) [Pubmed]
  11. Stereochemistry of the cyclization-rearrangement of (+)-copalyl diphosphate to (-)-abietadiene catalyzed by recombinant abietadiene synthase from Abies grandis. Ravn, M.M., Coates, R.M., Flory, J.E., Peters, R.J., Croteau, R. Org. Lett. (2000) [Pubmed]
  12. Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture. Koutaniemi, S., Toikka, M.M., Kärkönen, A., Mustonen, M., Lundell, T., Simola, L.K., Kilpeläinen, I.A., Teeri, T.H. Plant Mol. Biol. (2005) [Pubmed]
  13. Synthesis of (-)-matairesinol, (-)-enterolactone, and (-)-enterodiol from the natural lignan hydroxymatairesinol. Eklund, P., Lindholm, A., Mikkola, J.P., Smeds, A., Lehtilä, R., Sjöholm, R. Org. Lett. (2003) [Pubmed]
  14. Monolignol oxidation by xylem peroxidase isoforms of Norway spruce (Picea abies) and silver birch (Betula pendula). Marjamaa, K., Kukkola, E., Lundell, T., Karhunen, P., Saranpää, P., Fagerstedt, K.V. Tree Physiol. (2006) [Pubmed]
  15. Three new lanostane-type triterpene lactones from the stem bark of Abies mariesii. Tanaka, R., Aoki, H., Mizota, T., Wada, S., Matsunaga, S., Tokuda, H., Nishino, H. Planta Med. (2000) [Pubmed]
  16. New insights into allelic diversity of a phosphoeno/pyruvate carboxylase in the conifer Picea abies (l.) Karst. Ipsen, A., Ziegenhagen, B. Planta (2001) [Pubmed]
  17. cDNA sequence and expression of an intron-containing histone H2A gene from Norway spruce, Picea abies. Sundås, A., Tandre, K., Kvarnheden, A., Engström, P. Plant Mol. Biol. (1993) [Pubmed]
  18. A cdc2 homologue and closely related processed retropseudogenes from Norway spruce. Kvarnheden, A., Tandre, K., Engström, P. Plant Mol. Biol. (1995) [Pubmed]
  19. Altering product outcome in Abies grandis (-)-limonene synthase and (-)-limonene/(-)-alpha-pinene synthase by domain swapping and directed mutagenesis. Katoh, S., Hyatt, D., Croteau, R. Arch. Biochem. Biophys. (2004) [Pubmed]
  20. cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Bohlmann, J., Phillips, M., Ramachandiran, V., Katoh, S., Croteau, R. Arch. Biochem. Biophys. (1999) [Pubmed]
  21. Transformation of terpenes using a Picea abies suspension culture. Lindmark-Henriksson, M., Isaksson, D., Vanek, T., Valterová, I., Högberg, H.E., Sjödin, K. J. Biotechnol. (2004) [Pubmed]
  22. Aminopeptidases in seeds of picea abies (L.) Karst.: characterization of leucine aminopeptidase by molecular properties and inhibitors. Müller-Starck, G., Hüttermann, A. Biochem. Genet. (1981) [Pubmed]
 
WikiGenes - Universities