The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEBI:128     2-[(1S)-4-methyl-1-cyclohex- 3-enyl]propan...

Synonyms: CHEMBL447597, SureCN980991, CPD-4887, bmse000667, ZINC00967595, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of C11393

  • We report here the isolation of a Pseudomonas species which will utilize a monoterpene natural product, alpha-terpineol, as its sole source of carbon and energy [1].
  • Because minor constituents in complex essential oils have been suggested to act as synergists, binary mixtures of the compounds were tested for synergy vis à vis acute toxicity and feeding deterrence. trans-Anethole acted synergistically with thymol, citronellal, and alpha-terpineol, in terms of both acute toxicity and feeding deterrence [2].
 

High impact information on C11393

 

Chemical compound and disease context of C11393

 

Biological context of C11393

 

Anatomical context of C11393

 

Associations of C11393 with other chemical compounds

 

Analytical, diagnostic and therapeutic context of C11393

  • The high enhancement by alpha-terpineol was due to macroscopic perturbation of the SC and the biological reaction in viable skin as evaluated by TEWL and colorimetry [19].

References

  1. Cytochrome P-450terp. Isolation and purification of the protein and cloning and sequencing of its operon. Peterson, J.A., Lu, J.Y., Geisselsoder, J., Graham-Lorence, S., Carmona, C., Witney, F., Lorence, M.C. J. Biol. Chem. (1992) [Pubmed]
  2. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). Hummelbrunner, L.A., Isman, M.B. J. Agric. Food Chem. (2001) [Pubmed]
  3. The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Copolovici, L.O., Filella, I., Llusià, J., Niinemets, U., Peñuelas, J. Plant Physiol. (2005) [Pubmed]
  4. Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution. Hasemann, C.A., Ravichandran, K.G., Peterson, J.A., Deisenhofer, J. J. Mol. Biol. (1994) [Pubmed]
  5. Leaf essential oil composition of five Zanthoxylum species from Monteverde, Costa Rica. Setzer, W.N., Noletto, J.A., Lawton, R.O., Haber, W.A. Mol. Divers. (2005) [Pubmed]
  6. Enantioselective synthesis of alpha-terpineol and nephthenol by intramolecular acyloxazolidinone enolate alkylations. Jin, Y., Coates, R.M. Chem. Commun. (Camb.) (2006) [Pubmed]
  7. Susceptibility of pseudomonads to Melaleuca alternifolia (tea tree) oil and components. Papadopoulos, C.J., Carson, C.F., Hammer, K.A., Riley, T.V. J. Antimicrob. Chemother. (2006) [Pubmed]
  8. Vapor phase toxicity of marjoram oil compounds and their related monoterpenoids to Blattella germanica (Orthoptera: Blattellidae). Jang, Y.S., Yang, Y.C., Choi, D.S., Ahn, Y.J. J. Agric. Food Chem. (2005) [Pubmed]
  9. Biotransformation of alpha-terpineol by the larvae of common cutworm (Spodoptera litura). Miyazawa, M., Ohsawa, M. J. Agric. Food Chem. (2002) [Pubmed]
  10. Analysis of fragrance compounds in blood samples of mice by gas chromatography, mass spectrometry, GC/FTIR and GC/AES after inhalation of sandalwood oil. Jirovetz, L., Buchbauer, G., Jäger, W., Woidich, A., Nikiforov, A. Biomed. Chromatogr. (1992) [Pubmed]
  11. Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division. Lampronti, I., Saab, A.M., Gambari, R. Int. J. Oncol. (2006) [Pubmed]
  12. Composition of the essential oils of Thymus and Origanum species from Algeria and their antioxidant and antimicrobial activities. Hazzit, M., Baaliouamer, A., Faleiro, M.L., Miguel, M.G. J. Agric. Food Chem. (2006) [Pubmed]
  13. In vitro permeation through porcine buccal mucosa of Salvia desoleana Atzei & Picci essential oil from topical formulations. Ceschel, G.C., Maffei, P., Moretti, M.D., Demontis, S., Peana, A.T. International journal of pharmaceutics. (2000) [Pubmed]
  14. Biosynthesis of monoterpenes: enzymatic concersion of neryl pyrophosphate to 1,8-cineole, alpha-terpineol, and cyclic monoterpene hydrocarbons by a cell-free preparation from sage (Salvia officinalis). Croteau, R., Karp, F. Arch. Biochem. Biophys. (1976) [Pubmed]
  15. Gas-phase chemistry of (alpha-terpineol with ozone and OH radical: rate constants and products. Wells, J.R. Environ. Sci. Technol. (2005) [Pubmed]
  16. Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Demyttenaere, J.C., del Carmen Herrera, M., De Kimpe, N. Phytochemistry (2000) [Pubmed]
  17. Biotransformation of (R)-(+)- and (S)-(-)-limonene by fungi and the use of solid phase microextraction for screening. Demyttenaere, J.C., Van Belleghem, K., De Kimpe, N. Phytochemistry (2001) [Pubmed]
  18. Behavioral and electrophysiological responses of Arhopalus tristis to burnt pine and other stimuli. Suckling, D.M., Gibb, A.R., Daly, J.M., Chen, X., Brockerhoff, E.G. J. Chem. Ecol. (2001) [Pubmed]
  19. Transdermal delivery of tea catechins and theophylline enhanced by terpenes: a mechanistic study. Fang, J.Y., Tsai, T.H., Lin, Y.Y., Wong, W.W., Wang, M.N., Huang, J.F. Biol. Pharm. Bull. (2007) [Pubmed]
 
WikiGenes - Universities