The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pinus


High impact information on Pinus

  • Novel lignin is formed in a mutant loblolly pine (Pinus taeda L.) severely depleted in cinnamyl alcohol dehydrogenase (E.C., which converts coniferaldehyde to coniferyl alcohol, the primary lignin precursor in pines [6].
  • We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT) [7].
  • A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene [8].
  • Samples taken from throughout the ranges of distribution of lodgepole pine (Pinus contorta Dougl. ex. Loud.) and jack pine (Pinus banksiana Lamb.) were assayed for Sal I and Sst I chloroplast DNA restriction fragment variation [9].
  • Transcriptional profiling of the phenylpropanoid pathway in Pinus taeda cell suspension cultures was carried out using quantitative real time PCR analyses of all known genes involved in the biosynthesis of the two monolignols, p-coumaryl and coniferyl alcohols (lignin/lignan precursors) [10].

Chemical compound and disease context of Pinus

  • The generation and accumulation of both benzoic acid (BA) and its conjugates were induced in suspension cultured cells of Pinus thunbergii by administering either phenylacetic acid (PA), a toxic metabolite of Bacillus cereus (strain HY-3) accompanying the pine wood nematode, or a lyophilized culture supernatant of this bacterium [11].

Biological context of Pinus


Anatomical context of Pinus

  • In order to examine if the putative GA-response element found in the GS1b promoter could function in the regulation of GS1b expression, a series of deletions of the upstream gene region were fused to the uidA reporter gene, and transient expression analyzed either in untreated or in GA3-treated pine (Pinus pinaster Ait.) protoplasts [17].
  • Xylose-rich polysaccharides from the primary walls of embryogenic cell line of Pinus caribaea [18].

Associations of Pinus with chemical compounds

  • A cell-free extract from the xylem of lodgepole pine (Pinus contorta) catalyzes the conversion of [1-3H1]geranyl pyrophosphate to a variety of monoterpene olefins found in lodgepole pine oleoresin [19].
  • Multisite inhibition of Pinus pinea isocitrate lyase by phosphate [20].
  • Electron spin resonance study of free radicals formed from a procyanidin-rich pine (Pinus maritima) bark extract, pycnogenol [21].
  • To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris) [22].
  • Ferulic acid excretion as a marker of consumption of a French maritime pine (Pinus maritima) bark extract [23].

Gene context of Pinus

  • Identification and expression of the chloroplast clpP gene in the conifer Pinus contorta [24].
  • Two S-adenosylmethionine synthetase (SAMS) cDNAs, PcSAMS1 and PcSAMS2, have been identified in Pinus contorta [25].
  • Pinus pinaster oil affects lipoprotein metabolism in apolipoprotein E-deficient mice [26].
  • We have identified LB-AUT7, a gene differentially expressed 6 h after ectomycorrhizal interaction between Laccaria bicolor and Pinus resinosa [27].
  • The gymnosperm Pinus sylvestris is an exception in that it is known to express a gene encoding a transit peptide-bearing GapC-like subunit that is imported into chloroplasts (GapCp), but the enzymatic properties of this novel GAPDH have not been described from any source [28].

Analytical, diagnostic and therapeutic context of Pinus


  1. High-level expression of Pinus sylvestris glutamine synthetase in Escherichia coli. Production of polyclonal antibodies against the recombinant protein and expression studies in pine seedlings. Canton, F.R., Garcia-Gutierrez, A., Crespillo, R., Cánovas, F.M. FEBS Lett. (1996) [Pubmed]
  2. Inhibition of human immunodeficiency virus forward and reverse transcription by PC6, a natural product from cones of pine trees. Takayama, H., Bradley, G., Lai, P.K., Tamura, Y., Sakagami, H., Tanaka, A., Nonoyama, M. AIDS Res. Hum. Retroviruses (1991) [Pubmed]
  3. Procyanidin fractions from pine (Pinus pinaster) bark: radical scavenging power in solution, antioxidant activity in emulsion, and antiproliferative effect in melanoma cells. Touriño, S., Selga, A., Jiménez, A., Juliá, L., Lozano, C., Lizárraga, D., Cascante, M., Torres, J.L. J. Agric. Food Chem. (2005) [Pubmed]
  4. Effects of low-carbohydrate diet and Pycnogenol treatment on retinal antioxidant enzymes in normal and diabetic rats. Kamuren, Z.T., McPeek, C.G., Sanders, R.A., Watkins, J.B. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics. (2006) [Pubmed]
  5. Production of cytokinin-like substances by mycorrhizal fungi of pine (Pinus sylvestris L.) in cultures with and without metabolites of actinomycetes. Strzelczyk, E., Kampert, M., Michalski, L. Acta Microbiol. Pol. (1985) [Pubmed]
  6. Abnormal lignin in a loblolly pine mutant. Ralph, J., MacKay, J.J., Hatfield, R.D., O'Malley, D.M., Whetten, R.W., Sederoff, R.R. Science (1997) [Pubmed]
  7. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine. Li, L., Popko, J.L., Zhang, X.H., Osakabe, K., Tsai, C.J., Joshi, C.P., Chiang, V.L. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  8. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Powell, W., Morgante, M., McDevitt, R., Vendramin, G.G., Rafalski, J.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  9. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Wagner, D.B., Furnier, G.R., Saghai-Maroof, M.A., Williams, S.M., Dancik, B.P., Allard, R.W. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  10. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism. Anterola, A.M., Jeon, J.H., Davin, L.B., Lewis, N.G. J. Biol. Chem. (2002) [Pubmed]
  11. Accumulation of benzoic acid in suspension cultured cells of Pinus thunbergii Parl. in response to phenylacetic acid administration. Kawazu, K., Zhang, H., Kanzaki, H. Biosci. Biotechnol. Biochem. (1996) [Pubmed]
  12. Nucleotide sequence of a full length cDNA clone of ribulose bisphosphate carboxylase small subunit gene from green dark-grown pine (Pinus tunbergii) seedling. Yamamoto, N., Kano-Murakami, Y., Matsuoka, M., Ohashi, Y., Tanaka, Y. Nucleic Acids Res. (1988) [Pubmed]
  13. Microarray analyses of gene expression during adventitious root development in Pinus contorta. Brinker, M., van Zyl, L., Liu, W., Craig, D., Sederoff, R.R., Clapham, D.H., von Arnold, S. Plant Physiol. (2004) [Pubmed]
  14. Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Ljung, K., Ostin, A., Lioussanne, L., Sandberg, G. Plant Physiol. (2001) [Pubmed]
  15. Pine stilbene synthase cDNA, a tool for probing environmental stress. Schwekendiek, A., Pfeffer, G., Kindl, H. FEBS Lett. (1992) [Pubmed]
  16. Protective mechanisms of pycnogenol in ethanol-insulted cerebellar granule cells. Siler-Marsiglio, K.I., Paiva, M., Madorsky, I., Serrano, Y., Neeley, A., Heaton, M.B. J. Neurobiol. (2004) [Pubmed]
  17. Molecular analysis of the 5'-upstream region of a gibberellin-inducible cytosolic glutamine synthetase gene (GS1b) expressed in pine vascular tissue. Gómez-Maldonado, J., Cánovas, F.M., Avila, C. Planta (2004) [Pubmed]
  18. Xylose-rich polysaccharides from the primary walls of embryogenic cell line of Pinus caribaea. Mollard, A., Domon, J.M., David, H., Joseleau, J.P. Int. J. Biol. Macromol. (1997) [Pubmed]
  19. Monoterpene synthases of Pinus contorta and related conifers. A new class of terpenoid cyclase. Savage, T.J., Hatch, M.W., Croteau, R. J. Biol. Chem. (1994) [Pubmed]
  20. Multisite inhibition of Pinus pinea isocitrate lyase by phosphate. Ranaldi, F., Vanni, P., Giachetti, E. Plant Physiol. (2000) [Pubmed]
  21. Electron spin resonance study of free radicals formed from a procyanidin-rich pine (Pinus maritima) bark extract, pycnogenol. Guo, Q., Zhao, B., Packer, L. Free Radic. Biol. Med. (1999) [Pubmed]
  22. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine. Uggla, C., Magel, E., Moritz, T., Sundberg, B. Plant Physiol. (2001) [Pubmed]
  23. Ferulic acid excretion as a marker of consumption of a French maritime pine (Pinus maritima) bark extract. Virgili, F., Pagana, G., Bourne, L., Rimbach, G., Natella, F., Rice-Evans, C., Packer, L. Free Radic. Biol. Med. (2000) [Pubmed]
  24. Identification and expression of the chloroplast clpP gene in the conifer Pinus contorta. Clarke, A.K., Gustafsson, P., Lidholm, J.A. Plant Mol. Biol. (1994) [Pubmed]
  25. Two S-adenosylmethionine synthetase-encoding genes differentially expressed during adventitious root development in Pinus contorta. Lindroth, A.M., Saarikoski, P., Flygh, G., Clapham, D., Grönroos, R., Thelander, M., Ronne, H., von Arnold, S. Plant Mol. Biol. (2001) [Pubmed]
  26. Pinus pinaster oil affects lipoprotein metabolism in apolipoprotein E-deficient mice. Asset, G., Baugé, E., Wolff, R.L., Fruchart, J.C., Dallongeville, J. J. Nutr. (1999) [Pubmed]
  27. LB-AUT7, a novel symbiosis-regulated gene from an ectomycorrhizal fungus, Laccaria bicolor, is functionally related to vesicular transport and autophagocytosis. Kim, S.J., Bernreuther, D., Thumm, M., Podila, G.K. J. Bacteriol. (1999) [Pubmed]
  28. Gene structure, expression in Escherichia coli and biochemical properties of the NAD+ -dependent glyceraldehyde-3-phosphate dehydrogenase from Pinus sylvestris chloroplasts. Meyer-Gauen, G., Herbrand, H., Pahnke, J., Cerff, R., Martin, W. Gene (1998) [Pubmed]
  29. Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.). Chiron, H., Drouet, A., Claudot, A.C., Eckerskorn, C., Trost, M., Heller, W., Ernst, D., Sandermann, H. Plant Mol. Biol. (2000) [Pubmed]
  30. Studies on the structure of the plant wax nonacosan-10-ol, the main component of epicuticular wax conifers. Matas, A.J., Sanz, M.J., Heredia, A. Int. J. Biol. Macromol. (2003) [Pubmed]
  31. Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Bois, G., Piché, Y., Fung, M.Y., Khasa, D.P. Mycorrhiza (2005) [Pubmed]
WikiGenes - Universities