The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Crocus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Crocus

 

High impact information on Crocus

  • Crocus sativus lectin (CSL) is one of the truly mannose-specific plant lectins that has a unique binding specificity that sets it apart from others [2].
  • Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives [3].
  • Crocus sativus is a triploid sterile plant characterized by its long red stigmas, which produce and store significant quantities of the apocarotenoids crocetin and crocin, formed from the oxidative cleavage of zeaxanthin [3].
  • Crocin is a pharmacologically active component of Crocus sativus L [4].
  • Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas [5].
 

Biological context of Crocus

 

Associations of Crocus with chemical compounds

  • Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro [8].
  • Three new monoterpenoids, crocusatin-J (1), -K (2), and -L (3), and a new naturally occurring acid, (3S),4-dihydroxybutyric acid (4), together with 31 known compounds were isolated and identified from the methanol extract of the petals of saffron (Crocus sativus) [9].
  • Catalytic properties of three L-lactate dehydrogenases from saffron corms (Crocus sativus L) [10].
  • Five new naturally occurring monoterpenoids, crocusatins-A (1), -B (2a), -C (3), -D (4a) -E (5), a new lactate, sodium (2S)-(O-hydroxyphenyl)lactate (6), and eighteen known compounds were isolated and characterized from the pollen of Crocus sativus L [11].
  • Lectin from bulbs of Crocus sativus recognizing N-linked core glycan: isolation and binding studies using fluorescence polarization [12].
 

Gene context of Crocus

 

Analytical, diagnostic and therapeutic context of Crocus

References

  1. Neuroprotection by crocetin in a hemi-parkinsonian rat model. Ahmad, A.S., Ansari, M.A., Ahmad, M., Saleem, S., Yousuf, S., Hoda, M.N., Islam, F. Pharmacol. Biochem. Behav. (2005) [Pubmed]
  2. Crocus sativus lectin recognizes Man3GlcNAc in the N-glycan core structure. Oda, Y., Nakayama, K., Abdul-Rahman, B., Kinoshita, M., Hashimoto, O., Kawasaki, N., Hayakawa, T., Kakehi, K., Tomiya, N., Lee, Y.C. J. Biol. Chem. (2000) [Pubmed]
  3. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Castillo, R., Fernández, J.A., Gómez-Gómez, L. Plant Physiol. (2005) [Pubmed]
  4. Crocin prevents the death of PC-12 cells through sphingomyelinase-ceramide signaling by increasing glutathione synthesis. Ochiai, T., Soeda, S., Ohno, S., Tanaka, H., Shoyama, Y., Shimeno, H. Neurochem. Int. (2004) [Pubmed]
  5. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Moraga, A.R., Nohales, P.F., Pérez, J.A., Gómez-Gómez, L. Planta (2004) [Pubmed]
  6. Effects of crocetin on antioxidant enzymatic activities in cardiac hypertrophy induced by norepinephrine in rats. Shen, X.C., Qian, Z.Y. Die Pharmazie. (2006) [Pubmed]
  7. Protective effect of cysteine and vitamin E, Crocus sativus and Nigella sativa extracts on cisplatin-induced toxicity in rats. el Daly, E.S. Journal de pharmacie de Belgique. (1998) [Pubmed]
  8. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Escribano, J., Alonso, G.L., Coca-Prados, M., Fernandez, J.A. Cancer Lett. (1996) [Pubmed]
  9. Antityrosinase principles and constituents of the petals of Crocus sativus. Li, C.Y., Lee, E.J., Wu, T.S. J. Nat. Prod. (2004) [Pubmed]
  10. Catalytic properties of three L-lactate dehydrogenases from saffron corms (Crocus sativus L). Keyhani, E., Sattarahmady, N. Mol. Biol. Rep. (2002) [Pubmed]
  11. Constituents of the pollen of Crocus sativus L. and their tyrosinase inhibitory activity. Li, C.Y., Wu, T.S. Chem. Pharm. Bull. (2002) [Pubmed]
  12. Lectin from bulbs of Crocus sativus recognizing N-linked core glycan: isolation and binding studies using fluorescence polarization. Kakehi, K., Kinoshita, M., Oda, Y., Abdul-Rahman, B. Meth. Enzymol. (2003) [Pubmed]
  13. Constituents of the stigmas of Crocus sativus and their tyrosinase inhibitory activity. Li, C.Y., Wu, T.S. J. Nat. Prod. (2002) [Pubmed]
  14. Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells. Soeda, S., Ochiai, T., Paopong, L., Tanaka, H., Shoyama, Y., Shimeno, H. Life Sci. (2001) [Pubmed]
  15. A modified, economic, sensitive method for measuring total antioxidant capacities of human plasma and natural compounds using Indian saffron (Crocus sativus). Chatterjee, S., Poduval, T.B., Tilak, J.C., Devasagayam, T.P. Clin. Chim. Acta (2005) [Pubmed]
  16. Inhibition of growth and induction of differentiation of promyelocytic leukemia (HL-60) by carotenoids from Crocus sativus L. Tarantilis, P.A., Morjani, H., Polissiou, M., Manfait, M. Anticancer Res. (1994) [Pubmed]
 
WikiGenes - Universities