The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Molecular Mimicry

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Molecular Mimicry

 

High impact information on Molecular Mimicry

 

Chemical compound and disease context of Molecular Mimicry

 

Biological context of Molecular Mimicry

 

Anatomical context of Molecular Mimicry

  • The E. histolytica adhesin shared sequence similarities and antigenic cross-reactivity with CD59, a membrane inhibitor of C5b-9 in human blood cells, suggesting both molecular mimicry and shared complement-inhibitory functions [21].
  • To investigate the molecular basis of antigenic mimicry by peptides, we studied a panel of closely related mAbs directed against the cell-wall polysaccharide of group A Streptococcus [22].
  • The possible relevance of molecular mimicry between a human coronavirus and the myelin basic protein component of myelin in the generation of this autoimmune reaction was evaluated [23].
  • Cross-reactivity due to molecular mimicry at the B-cell level was shown between the CYP2D6 and the HCV NS3 and NS5a proteins and could explain the presence of anti-LKM1 in patients chronically infected with HCV [24].
  • Finally we discuss viral mechanisms for sabotaging or manipulating the chemokine system, in part to illustrate the level of molecular mimicry that viruses have achieved and the evolutionary pressure imposed on the immune system by these pathogens [25].
 

Associations of Molecular Mimicry with chemical compounds

  • The structure of one such cationic molecule suggested a molecular mimicry with spermine, a ubiquitous endogenous biogenic amine that increases significantly at sites of inflammation and infection [26].
  • For an epitope that is sequence-specific (anti-FIPV system), molecular mimicry appears to be present as evidenced by the sequence homology between the CDR loops of the anti-id and the epitope of the original antigen [27].
  • This unique molecular mimicry has provided clues leading to the discovery of guanylin and insight into the mechanism of action of these intestinal peptides [28].
  • Comparison of this structure with that of ConA bound to methyl alpha-d-mannopyranoside provided direct structural evidence of molecular mimicry in the context of ligand receptor binding [29].
  • Mercuric conjugates of cysteine are transported by the amino acid transporter system b(0,+): implications of molecular mimicry [30].
 

Gene context of Molecular Mimicry

  • Thus, unlike Wnt antagonists, which exert their effects by molecular mimicry of Fz or Wnt sequestration through other mechanisms, Dkk-1 specifically inhibits canonical Wnt signalling by binding to the LRP6 component of the receptor complex [31].
  • Molecular mimicry between HCV proteins and CYP2D6 has been proposed to explain the emergence of these autoantibodies [24].
  • This suggested that US28 was originally copied from a human chemokine receptor gene, perhaps to provide the virus with a selective advantage through molecular mimicry [32].
  • The antigenic epitopes of NT-modified enolase and Hspa5 exhibited sequence homology and cross-reactivity, suggesting that epitope spreading may occur through a molecular mimicry mechanism [33].
  • Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2 [34].
 

Analytical, diagnostic and therapeutic context of Molecular Mimicry

  • Although the exact molecular mimicry relationship of this 180-186 epitope with the proteoglycan moiety of cartilage remains to be elucidated, the crucial significance of hsp65 immunity has been substantiated further, not only in adjuvant arthritis, but also in other models of experimentally induced arthritis [35].

References

  1. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Wucherpfennig, K.W., Strominger, J.L. Cell (1995) [Pubmed]
  2. Autoimmunity due to molecular mimicry as a cause of neurological disease. Levin, M.C., Lee, S.M., Kalume, F., Morcos, Y., Dohan, F.C., Hasty, K.A., Callaway, J.C., Zunt, J., Desiderio, D., Stuart, J.M. Nat. Med. (2002) [Pubmed]
  3. A virus-induced molecular mimicry model of multiple sclerosis. Olson, J.K., Croxford, J.L., Calenoff, M.A., Dal Canto, M.C., Miller, S.D. J. Clin. Invest. (2001) [Pubmed]
  4. Molecular mimicry of mitochondrial and nuclear autoantigens in primary biliary cirrhosis. Shimoda, S., Nakamura, M., Ishibashi, H., Kawano, A., Kamihira, T., Sakamoto, N., Matsushita, S., Tanaka, A., Worman, H.J., Gershwin, M.E., Harada, M. Gastroenterology (2003) [Pubmed]
  5. Molecular mimicry between the rabies virus glycoprotein and human immunodeficiency virus-1 GP120: cross-reacting antibodies induced by rabies vaccination. Bracci, L., Ballas, S.K., Spreafico, A., Neri, P. Blood (1997) [Pubmed]
  6. Molecular mimicry in development: identification of ste11+ as a substrate and mei3+ as a pseudosubstrate inhibitor of ran1+ kinase. Li, P., McLeod, M. Cell (1996) [Pubmed]
  7. Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Cywes, C., Wessels, M.R. Nature (2001) [Pubmed]
  8. Molecular mimicry mediated by MHC class Ib molecules after infection with gram-negative pathogens. Lo, W.F., Woods, A.S., DeCloux, A., Cotter, R.J., Metcalf, E.S., Soloski, M.J. Nat. Med. (2000) [Pubmed]
  9. A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA. Voloshin, O.N., Ramirez, B.E., Bax, A., Camerini-Otero, R.D. Genes Dev. (2001) [Pubmed]
  10. Diversity of microbial sialic acid metabolism. Vimr, E.R., Kalivoda, K.A., Deszo, E.L., Steenbergen, S.M. Microbiol. Mol. Biol. Rev. (2004) [Pubmed]
  11. Toward a better understanding of the basis of the molecular mimicry of polysaccharide antigens by peptides: the example of Shigella flexneri 5a. Clément, M.J., Fortuné, A., Phalipon, A., Marcel-Peyre, V., Simenel, C., Imberty, A., Delepierre, M., Mulard, L.A. J. Biol. Chem. (2006) [Pubmed]
  12. A full biological response to autoantibodies in Graves' disease requires a disulfide-bonded loop in the thyrotropin receptor N terminus homologous to a laminin epidermal growth factor-like domain. Chen, C.R., Tanaka, K., Chazenbalk, G.D., McLachlan, S.M., Rapoport, B. J. Biol. Chem. (2001) [Pubmed]
  13. An attenuated variant of Coxsackievirus B3 preferentially induces immunoregulatory T cells in vivo. Loudon, R.P., Moraska, A.F., Huber, S.A., Schwimmbeck, P., Schultheiss, P. J. Virol. (1991) [Pubmed]
  14. A point of view: The need to identify an antigen in psyconeuroimmunological disorders. Covelli, V., Pellegrino, N.M., Jirillo, E. Curr. Pharm. Des. (2003) [Pubmed]
  15. Binding of HIV-1 gp120 to the nicotinic receptor. Bracci, L., Lozzi, L., Rustici, M., Neri, P. FEBS Lett. (1992) [Pubmed]
  16. Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie B4-2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies. Richter, W., Mertens, T., Schoel, B., Muir, P., Ritzkowsky, A., Scherbaum, W.A., Boehm, B.O. J. Exp. Med. (1994) [Pubmed]
  17. Ankylosing spondylitis, immune-response-genes and molecular mimicry. Ebringer, A. Lancet (1979) [Pubmed]
  18. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Bochkareva, E., Kaustov, L., Ayed, A., Yi, G.S., Lu, Y., Pineda-Lucena, A., Liao, J.C., Okorokov, A.L., Milner, J., Arrowsmith, C.H., Bochkarev, A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  19. An apparent dimerization motif in the third domain of alpha-fetoprotein: molecular mimicry of the steroid/thyroid nuclear receptor superfamily. Mizejewski, G.J. Bioessays (1993) [Pubmed]
  20. A novel mechanism for virus-induced autoimmunity in humans. Nauclér, C.S., Larsson, S., Möller, E. Immunol. Rev. (1996) [Pubmed]
  21. Inhibition of the complement membrane attack complex by the galactose-specific adhesion of Entamoeba histolytica. Braga, L.L., Ninomiya, H., McCoy, J.J., Eacker, S., Wiedmer, T., Pham, C., Wood, S., Sims, P.J., Petri, W.A. J. Clin. Invest. (1992) [Pubmed]
  22. Exploring the basis of peptide-carbohydrate crossreactivity: evidence for discrimination by peptides between closely related anti-carbohydrate antibodies. Harris, S.L., Craig, L., Mehroke, J.S., Rashed, M., Zwick, M.B., Kenar, K., Toone, E.J., Greenspan, N., Auzanneau, F.I., Marino-Albernas, J.R., Pinto, B.M., Scott, J.K. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  23. Myelin basic protein and human coronavirus 229E cross-reactive T cells in multiple sclerosis. Talbot, P.J., Paquette, J.S., Ciurli, C., Antel, J.P., Ouellet, F. Ann. Neurol. (1996) [Pubmed]
  24. LKM1 autoantibodies in chronic hepatitis C infection: a case of molecular mimicry? Marceau, G., Lapierre, P., Béland, K., Soudeyns, H., Alvarez, F. Hepatology (2005) [Pubmed]
  25. Chemokine-receptor interactions: GPCRs, glycosaminoglycans and viral chemokine binding proteins. Lau, E.K., Allen, S., Hsu, A.R., Handel, T.M. Adv. Protein Chem. (2004) [Pubmed]
  26. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. Zhang, M., Caragine, T., Wang, H., Cohen, P.S., Botchkina, G., Soda, K., Bianchi, M., Ulrich, P., Cerami, A., Sherry, B., Tracey, K.J. J. Exp. Med. (1997) [Pubmed]
  27. Anti-idiotypic antibodies: biological function and structural studies. Pan, Y., Yuhasz, S.C., Amzel, L.M. FASEB J. (1995) [Pubmed]
  28. Guanylin: a peptide regulator of epithelial transport. Forte, L.R., Currie, M.G. FASEB J. (1995) [Pubmed]
  29. Functional equality in the absence of structural similarity: an added dimension to molecular mimicry. Goel, M., Jain, D., Kaur, K.J., Kenoth, R., Maiya, B.G., Swamy, M.J., Salunke, D.M. J. Biol. Chem. (2001) [Pubmed]
  30. Mercuric conjugates of cysteine are transported by the amino acid transporter system b(0,+): implications of molecular mimicry. Bridges, C.C., Bauch, C., Verrey, F., Zalups, R.K. J. Am. Soc. Nephrol. (2004) [Pubmed]
  31. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Bafico, A., Liu, G., Yaniv, A., Gazit, A., Aaronson, S.A. Nat. Cell Biol. (2001) [Pubmed]
  32. Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor. Gao, J.L., Murphy, P.M. J. Biol. Chem. (1994) [Pubmed]
  33. Production of a novel class of polyreactive pathogenic autoantibodies in BXD2 mice causes glomerulonephritis and arthritis. Hsu, H.C., Zhou, T., Kim, H., Barnes, S., Yang, P., Wu, Q., Zhou, J., Freeman, B.A., Luo, M., Mountz, J.D. Arthritis Rheum. (2006) [Pubmed]
  34. Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Simmons-Willis, T.A., Koh, A.S., Clarkson, T.W., Ballatori, N. Biochem. J. (2002) [Pubmed]
  35. Heat-shock proteins as immunogenic bacterial antigens with the potential to induce and regulate autoimmune arthritis. van Eden, W. Immunol. Rev. (1991) [Pubmed]
 
WikiGenes - Universities