The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Lysogeny

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Lysogeny

 

High impact information on Lysogeny

  • This may result from the deficiency of cII protein caused by its decreased stability, since cII product is required for establishment of lysogeny [6].
  • Since the himA gene product is required also for lambda site-specific recombination, it appears that the himA gene regulates lambda lysogeny at several levels [7].
  • Thus, oop RNA seems to have a dual role, either favouring the lytic cycle as a primer for the initiation of lambda DNA replication, or leading to the establishment of lysogeny when elongated into the imm transcript, which directs synthesis of the repressor [8].
  • Here we show that truncated forms of the key regulator of Mu lysogeny, the repressor Repc, accumulate in the absence of SsrA [9].
  • The Cro protein specified by bacteriophage lambda is a repressor essential for normal lytic growth of the virus, thus having a physiological role distinct from that of cI, the repressor that maintains lysogeny [10].
 

Chemical compound and disease context of Lysogeny

 

Biological context of Lysogeny

 

Anatomical context of Lysogeny

  • The similarity of PagC and Ail to Lom leads us to hypothesize that Lom is a virulence protein and that bacteriophage gene transfer and lysogeny could have led to the development of proteins essential to survival within macrophages and eucaryotic cell invasion [18].
 

Associations of Lysogeny with chemical compounds

 

Gene context of Lysogeny

  • These results indicate that the himA gene participates in the regulation of the promoter sites specific of the establishment of lysogeny: PE for cl synthesis and PI, for Int production [7].
  • An initial limitation caused by host factors would be amplified by the action of the cII and cIII products, at high multiplicity only, and the resulting inhibition would be essential in the "choice" towards lysogeny [22].
  • Activation of the weak PRM promoter by cI protein is an essential process in the establishment of lysogeny [23].
  • The c4 repressors of the temperate bacteriophages P1 and P7 inhibit antirepressor synthesis and are essential for establishment and maintenance of lysogeny [24].
  • Our results indicate that one of the repressors required for maintenance of lysogeny, the mnt gene product, may be partially responsible for this phenomenon [25].
 

Analytical, diagnostic and therapeutic context of Lysogeny

  • Sequence alignment with the lysogeny module from the cos-site-containing S. thermophilus bacteriophage phiSfi21 revealed areas of high sequence conservation (e.g., over the int gene), interspersed with regions of low or no sequence similarity (e.g., over the cro gene) [26].

References

  1. Cleavage of the cII protein of phage lambda by purified HflA protease: control of the switch between lysis and lysogeny. Cheng, H.H., Muhlrad, P.J., Hoyt, M.A., Echols, H. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  2. Chloramphenicol stimulation of lysogeny by lambda regulatory mutants. Kudrna, R., Edlin, G. J. Virol. (1975) [Pubmed]
  3. Lethal transposition of Mud phages in Rec- strains of Salmonella typhimurium. Sonti, R.V., Keating, D.H., Roth, J.R. Genetics (1993) [Pubmed]
  4. Interaction of the Cro repressor with the lysis/lysogeny switch of the Lactobacillus casei temperate bacteriophage A2. Ladero, V., García, P., Alonso, J.C., Suárez, J.E. J. Gen. Virol. (2002) [Pubmed]
  5. Genetic analysis of the Rhizobium meliloti nifH promoter, using the P22 challenge phage system. Ashraf, S.I., Kelly, M.T., Wang, Y.K., Hoover, T.R. J. Bacteriol. (1997) [Pubmed]
  6. Protein degradation in E. coli: the Ion mutation and bacteriophage lambda N and cll protein stability. Gottesman, S., Gottesman, M., Shaw, J.E., Pearson, M.L. Cell (1981) [Pubmed]
  7. Multilevel regulation of bacteriophage lambda lysogeny by the E. coli himA gene. Miller, H.I. Cell (1981) [Pubmed]
  8. 4S oop RNA is a leader sequence for the immunity-establishment transcription in coliphage lambda. Honigman, A., Hu, S.L., Chase, R., Szybalski, W. Nature (1976) [Pubmed]
  9. The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage. Ranquet, C., Geiselmann, J., Toussaint, A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  10. Purification and properties of a DNA-binding protein with characteristics expected for the Cro protein of bacteriophage lambda, a repressor essential for lytic growth. Folkmanis, A., Takeda, Y., Simuth, J., Gussin, G., Echols, H. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  11. Temperate bacteriophages and lysogeny in lactic acid bacteria. Davidson, B.E., Powell, I.B., Hillier, A.J. FEMS Microbiol. Rev. (1990) [Pubmed]
  12. Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Hodgson, D.A. Mol. Microbiol. (2000) [Pubmed]
  13. The influence of the O-antigen and the capsular polysaccharide on the establishment of PlCmts lysogeny in Klebsiella pneumoniae. Camprubí, S., Sabater, E., Regué, M., Tomás, J.M. FEMS Microbiol. Lett. (1989) [Pubmed]
  14. Role of the lytic repressor in prophage induction of phage lambda as analyzed by a module-replacement approach. Atsumi, S., Little, J.W. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  15. Establishment of lysogeny in bacteriophage 186. DNA binding and transcriptional activation by the CII protein. Shearwin, K.E., Egan, J.B. J. Biol. Chem. (2000) [Pubmed]
  16. Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis. Zimmer, M., Sattelberger, E., Inman, R.B., Calendar, R., Loessner, M.J. Mol. Microbiol. (2003) [Pubmed]
  17. The prophage sequences of Lactobacillus plantarum strain WCFS1. Ventura, M., Canchaya, C., Kleerebezem, M., de Vos, W.M., Siezen, R.J., Brüssow, H. Virology (2003) [Pubmed]
  18. A Salmonella typhimurium virulence protein is similar to a Yersinia enterocolitica invasion protein and a bacteriophage lambda outer membrane protein. Pulkkinen, W.S., Miller, S.I. J. Bacteriol. (1991) [Pubmed]
  19. Integration host factor activates the Ner-repressed early promoter of transposable Mu-like phage D108. Kukolj, G., DuBow, M.S. J. Biol. Chem. (1992) [Pubmed]
  20. Observations on lysogeny in glutamic acid bacteria. Shapiro, J.A. Appl. Environ. Microbiol. (1976) [Pubmed]
  21. Control of bacteriophage lambda CII activity by bacteriophage and host functions. Rattray, A., Altuvia, S., Mahajna, G., Oppenheim, A.B., Gottesman, M. J. Bacteriol. (1984) [Pubmed]
  22. Lysogenization by bacteriophage lambda IV inhibition of phage DNA synthesis by the products of genes cII and cIII. Kourilsky, P., Gros, D. Biochimie (1976) [Pubmed]
  23. Interference by PR-bound RNA polymerase with PRM function in vitro. Modulation by the bacteriophage lambda cI protein. Hershberger, P.A., Mita, B.C., Tripatara, A., deHaseth, P.L. J. Biol. Chem. (1993) [Pubmed]
  24. The c4 repressor of bacteriophage P1 is a processed 77 base antisense RNA. Citron, M., Schuster, H. Nucleic Acids Res. (1992) [Pubmed]
  25. Bacteriophage P22 tail protein gene expression. Adams, M.B., Brown, H.R., Casjens, S. J. Virol. (1985) [Pubmed]
  26. Comparison of the lysogeny modules from the temperate Streptococcus thermophilus bacteriophages TP-J34 and Sfi21: implications for the modular theory of phage evolution. Neve, H., Zenz, K.I., Desiere, F., Koch, A., Heller, K.J., Brüssow, H. Virology (1998) [Pubmed]
 
WikiGenes - Universities