The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Peruviol     (6E)-3,7,11-trimethyldodeca- 1,6,10-trien-3-ol

Synonyms: NEROLIDOL, Nerolidol 1, Nerolidol 2, Nerolidol (E), CHEMBL25424, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Nerolidol trans-form

 

High impact information on Nerolidol trans-form

  • Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives [6].
  • V-BrPO likely functions by catalyzing the two-electron oxidation of bromide ion by hydrogen peroxide producing a bromonium ion or equivalent in the active site that brominates one face of the terminal olefin of nerolidol [7].
  • The activity of nerolidol, a sesquiterpene used as a food-flavoring agent and currently under testing as a skin penetration enhancer for the transdermal delivery of therapeutic drugs, was evaluated against Leishmania species [3].
  • The treatment of L. amazonensis-infected macrophages with 100 microM nerolidol resulted in 95% reduction in infection rates [3].
  • Isotopic ratio mass spectrometry (IRMS) at natural abundance levels demonstrated independently and without the need for labeled precursors a dynamic allocation of the MVA- or the MEP-pathway in the biosynthesis of the nerolidol-derived homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) [8].
 

Biological context of Nerolidol trans-form

 

Anatomical context of Nerolidol trans-form

 

Associations of Nerolidol trans-form with other chemical compounds

 

Analytical, diagnostic and therapeutic context of Nerolidol trans-form

References

  1. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Aharoni, A., Giri, A.P., Verstappen, F.W., Bertea, C.M., Sevenier, R., Sun, Z., Jongsma, M.A., Schwab, W., Bouwmeester, H.J. Plant Cell (2004) [Pubmed]
  2. Inhibition of azoxymethane-induced neoplasia of the large bowel by 3-hydroxy-3,7,11-trimethyl-1,6,10-dodecatriene (nerolidol). Wattenberg, L.W. Carcinogenesis (1991) [Pubmed]
  3. Antileishmanial activity of the terpene nerolidol. Arruda, D.C., D'Alexandri, F.L., Katzin, A.M., Uliana, S.R. Antimicrob. Agents Chemother. (2005) [Pubmed]
  4. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Brehm-Stecher, B.F., Johnson, E.A. Antimicrob. Agents Chemother. (2003) [Pubmed]
  5. A new pathway for the degradation of a sesquiterpene alcohol, nerolidol by Alcaligenes eutrophus. Madyastha, K.M., Gururaja, T.L. Biochem. Biophys. Res. Commun. (1993) [Pubmed]
  6. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Aharoni, A., Giri, A.P., Deuerlein, S., Griepink, F., de Kogel, W.J., Verstappen, F.W., Verhoeven, H.A., Jongsma, M.A., Schwab, W., Bouwmeester, H.J. Plant Cell (2003) [Pubmed]
  7. Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. Carter-Franklin, J.N., Butler, A. J. Am. Chem. Soc. (2004) [Pubmed]
  8. Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Bartram, S., Jux, A., Gleixner, G., Boland, W. Phytochemistry (2006) [Pubmed]
  9. Characterization of nerolidol biotransformation based on indirect on-line estimation of biomass concentration and physiological state in batch cultures of Aspergillus niger. Hrdlicka, P.J., Sørensen, A.B., Poulsen, B.R., Ruijter, G.J., Visser, J., Iversen, J.J. Biotechnol. Prog. (2004) [Pubmed]
  10. The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. Inoue, Y., Shiraishi, A., Hada, T., Hirose, K., Hamashima, H., Shimada, J. FEMS Microbiol. Lett. (2004) [Pubmed]
  11. Enzymatic formation of nerolidol in cell-free extract of Rhodotorula glutinis. Nishino, T., Suzuki, N., Katsuki, H. J. Biochem. (1982) [Pubmed]
  12. The effects of terpene enhancers on the percutaneous permeation of drugs with different lipophilicities. El-Kattan, A.F., Asbill, C.S., Kim, N., Michniak, B.B. International journal of pharmaceutics. (2001) [Pubmed]
  13. Antifungal Effect of Eugenol and Nerolidol against Microsporum gypseum in a Guinea Pig Model. Lee, S.J., Han, J.I., Lee, G.S., Park, M.J., Choi, I.G., Na, K.J., Jeung, E.B. Biol. Pharm. Bull. (2007) [Pubmed]
  14. High-performance liquid chromatography and thin-layer chromatography assays for Devil's Club (Oplopanax horridus). Gruber, J.W., Kittipongpatana, N., Bloxton, J.D., Der Marderosian, A., Schaefer, F.T., Gibbs, R. Journal of chromatographic science. (2004) [Pubmed]
 
WikiGenes - Universities