The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Rhodotorula

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rhodotorula

 

High impact information on Rhodotorula

  • An mRNA-type intron is present in the Rhodotorula hasegawae U2 small nuclear RNA gene [6].
  • The flavoenzyme d-amino acid oxidase (DAAO) from Rhodotorula gracilis is a peroxisomal enzyme and a prototypical member of the glutathione reductase family of flavoproteins [7].
  • We report here the isolation, purification, and characterization of a catalytically active cytosolic 10 S multienzyme complex for triacylglycerol biosynthesis from Rhodotorula glutinis during exponential growth [8].
  • Influence of moderate temperatures on myristoyl-CoA metabolism and acyl-CoA thioesterase activity in the psychrophilic antarctic yeast Rhodotorula aurantiaca [9].
  • Arg(285), one of the very few conserved residues in the active site of d-amino acid oxidases, has been mutated to lysine, glutamine, aspartate, and alanine in the enzyme from the yeast Rhodotorula gracilis (RgDAAO) [10].
 

Chemical compound and disease context of Rhodotorula

 

Biological context of Rhodotorula

 

Anatomical context of Rhodotorula

 

Associations of Rhodotorula with chemical compounds

  • Maximal enzyme activity in Rhodotorula glutinis (2 units/g, wet weight, of yeast) was induced in late-log phase (12 to 14 hours) of growth in a culture medium containing 1.0% malt extract, 0.1% yeast extract, and 0.1% L-phenylalanine [20].
  • The yeast Rhodotorula pilimanae produces the dihydroxamate siderophore rhodotorulic acid (RA) in prodigious amounts when starved for iron [21].
  • Substitution of nucleoside triphosphates for ascorbate in the thymine 7-hydroxylase reaction of Rhodotorula glutinis [22].
  • The turnover numbers at infinite substrate and oxygen concentrations were: 20,700/4,250 and 1,730/360 ([2-1H]/[2-2H]alanine and valine, respectively) for the Rhodotorula and 3,150/440 and 2,500/520 ([2-1H]/[2-2H]alanine and valine, respectively) for the Trigonopsis enzymes [23].
  • Cell-free preparations from Rhodotorula glutinis catalyzed the conversion of deoxyribonucleosides to ribonucleosides in a pyrimidine deoxyribonucleoside 2' -hydroxylase reaction [24].
 

Gene context of Rhodotorula

 

Analytical, diagnostic and therapeutic context of Rhodotorula

References

  1. Microbial transformation of precocene II: oxidative reactions by Streptomyces griseus. Sariaslani, F.S., McGee, L.R., Ovenall, D.W. Appl. Environ. Microbiol. (1987) [Pubmed]
  2. Cloning, sequencing and expression in E. coli of a D-amino acid oxidase cDNA from Rhodotorula gracilis active on cephalosporin C. Pollegioni, L., Molla, G., Campaner, S., Martegani, E., Pilone, M.S. J. Biotechnol. (1997) [Pubmed]
  3. Amphotericin B treatment of fungemia due to unusual pathogens in neutropenic patients: report of two cases. Fanci, R., Pecile, P., Martinez, R.L., Fabbri, A., Nicoletti, P. Journal of chemotherapy (Florence, Italy) (1997) [Pubmed]
  4. Endocarditis caused by Rhodotorula successfully treated with 5-fluorocytosine. Naveh, Y., Friedman, A., Merzbach, D., Hashman, N. British heart journal. (1975) [Pubmed]
  5. Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-lactobacillus casei subsp. casei co-cultures in whey ultrafiltrate. Simova, E.D., Frengova, G.I., Beshkova, D.M. Z. Naturforsch., C, J. Biosci. (2003) [Pubmed]
  6. An mRNA-type intron is present in the Rhodotorula hasegawae U2 small nuclear RNA gene. Takahashi, Y., Urushiyama, S., Tani, T., Ohshima, Y. Mol. Cell. Biol. (1993) [Pubmed]
  7. Unfolding intermediate in the peroxisomal flavoprotein D-amino acid oxidase. Caldinelli, L., Iametti, S., Barbiroli, A., Bonomi, F., Piubelli, L., Ferranti, P., Picariello, G., Pilone, M.S., Pollegioni, L. J. Biol. Chem. (2004) [Pubmed]
  8. Isolation and localization of a cytosolic 10 S triacylglycerol biosynthetic multienzyme complex from oleaginous yeast. Gangar, A., Karande, A.A., Rajasekharan, R. J. Biol. Chem. (2001) [Pubmed]
  9. Influence of moderate temperatures on myristoyl-CoA metabolism and acyl-CoA thioesterase activity in the psychrophilic antarctic yeast Rhodotorula aurantiaca. Sabri, A., Bare, G., Jacques, P., Jabrane, A., Ongena, M., Van Heugen, J.C., Devreese, B., Thonart, P. J. Biol. Chem. (2001) [Pubmed]
  10. Role of arginine 285 in the active site of Rhodotorula gracilis D-amino acid oxidase. A site-directed mutagenesis study. Molla, G., Porrini, D., Job, V., Motteran, L., Vegezzi, C., Campaner, S., Pilone, M.S., Pollegioni, L. J. Biol. Chem. (2000) [Pubmed]
  11. Rhodotorula septicemia: report of a case. Sheu, M.J., Wang, C.C., Wang, C.C., Shi, W.J., Chu, M.L. J. Formos. Med. Assoc. (1994) [Pubmed]
  12. Nucleotide sequence of gene for phenylalanine ammonia-lyase from Rhodotorula rubra. Filpula, D., Vaslet, C.A., Levy, A., Sykes, A., Strausberg, R.L. Nucleic Acids Res. (1988) [Pubmed]
  13. Tetraphenylphosphonium ion is a true indicator of negative plasma-membrane potential in the yeast Rhodotorula glutinis. Experiments under osmotic stress and at low external pH values. Höfer, M., Künemund, A. Biochem. J. (1985) [Pubmed]
  14. Alteration in the cytosolic triacylglycerol biosynthetic machinery leads to decreased cell growth and triacylglycerol synthesis in oleaginous yeast. Gangar, A., Raychaudhuri, S., Rajasekharan, R. Biochem. J. (2002) [Pubmed]
  15. Development of a serum-free system for the in vitro cultivation of Brugia malayi infective-stage larvae. Smith, H.L., Paciorkowski, N., Babu, S., Rajan, T.V. Exp. Parasitol. (2000) [Pubmed]
  16. Kinetics of D-glucose and 2-deoxy-D-glucose transport by Rhodotorula glutinis. Taghikhani, M., Lavi, L.W., Woost, P.G., Griffin, C.C. Biochim. Biophys. Acta (1984) [Pubmed]
  17. Ultrastructure of methanotrophic yeasts. Wolf, H.J., Christiansen, M., Hanson, R.S. J. Bacteriol. (1980) [Pubmed]
  18. Transport of L-glucose by Rhodotorula glutinis. Pinkerton, M.D., Ritchie, C.K., Griffin, C.C. Biochimie (1988) [Pubmed]
  19. Glucosamine and chitin accumulation in cell walls of the yeast Rhodotorula glutinis CBS 3044. Influence of culture conditions. Berthe, M.C., Charpentier, C., Lematre, J., Bonaly, R. Biochem. Biophys. Res. Commun. (1981) [Pubmed]
  20. Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals. Fritz, R.R., Hodgins, D.S., Abell, C.W. J. Biol. Chem. (1976) [Pubmed]
  21. The mechanism and specificity of iron transport in Rhodotorula pilimanae probed by synthetic analogs of rhodotorulic acid. Müller, G., Barclay, S.J., Raymond, K.N. J. Biol. Chem. (1985) [Pubmed]
  22. Substitution of nucleoside triphosphates for ascorbate in the thymine 7-hydroxylase reaction of Rhodotorula glutinis. Wondrack, L.M., Warn, B.J., Saewert, M.D., Abbott, M.T. J. Biol. Chem. (1979) [Pubmed]
  23. Kinetic mechanism of D-amino acid oxidases from Rhodotorula gracilis and Trigonopsis variabilis. Pollegioni, L., Langkau, B., Tischer, W., Ghisla, S., Pilone, M.S. J. Biol. Chem. (1993) [Pubmed]
  24. Thymine 7-hydroxylase and pyrimidine deoxyribonucleoside 2' -hydroxylase activities in Rhodotorula glutinis. Wondrack, L.M., Hsu, C.A., Abbott, M.T. J. Biol. Chem. (1978) [Pubmed]
  25. Biosynthesis of lysine in Rhodotorula glutinis: role of pipecolic acid. Kurtz, M., Bhattacharjee, J.K. J. Gen. Microbiol. (1975) [Pubmed]
  26. Cytochrome P-450-dependent catabolism of triethanolamine in Rhodotorula mucilaginosa. Fattakhova, A.N., Ofitserov, E.N., Garusov, A.V. Biodegradation (1991) [Pubmed]
  27. Reaction of phenylglyoxal with arginine groups in D-amino-acid oxidase from Rhodotorula gracilis. Gadda, G., Negri, A., Pilone, M.S. J. Biol. Chem. (1994) [Pubmed]
  28. Induction of cytotoxic oxidative stress by D-alanine in brain tumor cells expressing Rhodotorula gracilis D-amino acid oxidase: a cancer gene therapy strategy. Stegman, L.D., Zheng, H., Neal, E.R., Ben-Yoseph, O., Pollegioni, L., Pilone, M.S., Ross, B.D. Hum. Gene Ther. (1998) [Pubmed]
  29. Studies on the active centre of Rhodotorula gracilis D-amino acid oxidase and comparison with pig kidney enzyme. Pollegioni, L., Ghisla, S., Pilone, M.S. Biochem. J. (1992) [Pubmed]
  30. Limited proteolysis and site-directed mutagenesis reveal the origin of microheterogeneity in Rhodotorula gracilis D-amino acid oxidase. Campaner, S., Pollegioni, L., Ross, B.D., Pilone, M.S. Biochem. J. (1998) [Pubmed]
  31. L-Mandelate dehydrogenase from Rhodotorula graminis: cloning, sequencing and kinetic characterization of the recombinant enzyme and its independently expressed flavin domain. Illias, R.M., Sinclair, R., Robertson, D., Neu, A., Chapman, S.K., Reid, G.A. Biochem. J. (1998) [Pubmed]
  32. On the holoenzyme reconstitution process in native and truncated Rhodotorula gracilis D-amino acid oxidase. Pollegioni, L., Pilone, M.S. Arch. Biochem. Biophys. (1996) [Pubmed]
  33. Dissection of the structural determinants involved in formation of the dimeric form of D-amino acid oxidase from Rhodotorula gracilis: role of the size of the betaF5-betaF6 loop. Piubelli, L., Molla, G., Caldinelli, L., Pilone, M.S., Pollegioni, L. Protein Eng. (2003) [Pubmed]
  34. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup. Buzzini, P. J. Appl. Microbiol. (2001) [Pubmed]
 
WikiGenes - Universities