The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Cormelian     3-[4-[3-(3,4,5- trimethoxyphenyl)carbonylox...

Synonyms: Dilazep, Dilazepam, Dilazepum, Labitan, Tocris-0481, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Dilazep


High impact information on Dilazep

  • In the current study we characterized the effects of immunoglobulin G (IgG) from patients with APS on monocyte TF activity and investigated whether dilazep is capable of blocking this effect [6].
  • Characterization of monocyte tissue factor activity induced by IgG antiphospholipid antibodies and inhibition by dilazep [6].
  • Dilazep is also known to exert cytoprotective and antioxidant effects on endothelial cells [7].
  • We also evaluated the effect of dilazep on TNF (1,000 U/mL)-induced TF expression on monocytes [7].
  • During maximal vasodilation (150 micrograms/kg body wt i.v. dilazep), long diastoles were induced by vagal nerve stimulation [8].

Chemical compound and disease context of Dilazep


Biological context of Dilazep

  • During vasodilation following dilazep (50 micrograms/kg, i.v.), an adenosine potentiator, red cell velocity increased throughout the entire cardiac cycle in epimyocardial microvessels with significant increases in the total area under the velocity curves accompanied by significant dilation of the arterioles [12].
  • When a yeast expression plasmid containing the hENT1 cDNA was randomly mutated and screened by phenotypic complementation in Saccharomyces cerevisiae to identify mutants with reduced sensitivity to dilazep, clones with a point mutation that converted Met33 to Ile (hENT1-M33I) were obtained [13].
  • The high affinity sites that bind nonprotonated species of dilazep appear to overlap with NBMPR binding sites on these cells [14].
  • 2CA-induced granule exocytosis was not reduced in the presence of the nucleoside uptake blockers NBTI, dilazep, or dipyridamole, indicating the involvement of an extracellular receptor [15].
  • Similar potentiated forskolin effect (IC50, 0.53 microM) is seen if the ADA-treated human PRP is replenished with a low level of Ado (50 nM) after ADA inactivation by dCF and Ado-uptake blockade by dilazep [16].

Anatomical context of Dilazep


Associations of Dilazep with other chemical compounds


Gene context of Dilazep

  • Human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2) differ functionally in that hENT2 generally displays lower affinity for its nucleoside permeants and is less sensitive to inhibition by the coronary vasodilators dilazep and dipyridamole [24].
  • This growth was prevented when inhibitors of hENT1 [e.g. NBMPR [S6-(4-nitrobenzyl)-mercaptopurine riboside], dilazep or dipyridamole] were included in the media [25].
  • Dilazep inhibited TF activity induced on HUVECs by each stimulant, TNF (1000 U/mL), thrombin (25 nmol/L), or PMA (5 nmol/L) in a dose-dependent fashion (1 to 100 microg/mL) [7].
  • Using NBMPR or dilazep to inhibit the endogenous nucleoside transport activity, we have transiently expressed a cDNA that encodes an inhibitor-insensitive, concentrative nucleoside transporter protein (cNT1rat) of rat intestine in COS-1 cells [26].
  • Similarly, Ado inhibited platelet aggregation in whole blood in the presence of other potent NTS inhibitors, dilazep (1 microM) and p-nitrobenzylthioinosine (NBMPR, 1 microM) [27].

Analytical, diagnostic and therapeutic context of Dilazep


  1. A comparison of the abilities of nitrobenzylthioinosine, dilazep, and dipyridamole to protect human hematopoietic cells from 7-deazaadenosine (tubercidin). Cass, C.E., King, K.M., Montaño, J.T., Janowska-Wieczorek, A. Cancer Res. (1992) [Pubmed]
  2. Effect of dilazep dihydrochloride against ischemia and reperfusion-induced disruption of blood-brain barrier in rats: a quantitative study. Kawagoe, J., Abe, K., Ikuta, J., Igarashi, N., Shimizu, S., Yamauchi, Y., Kogure, K. Naunyn Schmiedebergs Arch. Pharmacol. (1992) [Pubmed]
  3. Dilazep and fenofibric acid inhibit MCP-1 mRNA expression in glycoxidized LDL-stimulated human endothelial cells. Sonoki, K., Iwase, M., Iino, K., Ichikawa, K., Yoshinari, M., Ohdo, S., Higuchi, S., Iida, M. Eur. J. Pharmacol. (2003) [Pubmed]
  4. Central nervous system effects and behavioral interactions with ethanol of centrally administered dilazep and its metabolites in mice. Dar, M.S. Eur. J. Pharmacol. (1989) [Pubmed]
  5. Intravenous dilazep reduces blood pressure and peripheral vascular resistance in humans. Poggesi, L., Masotti, G., Serneri, G.G., Carnovali, M. Journal of clinical pharmacology. (1988) [Pubmed]
  6. Characterization of monocyte tissue factor activity induced by IgG antiphospholipid antibodies and inhibition by dilazep. Zhou, H., Wolberg, A.S., Roubey, R.A. Blood (2004) [Pubmed]
  7. Dilazep, an antiplatelet agent, inhibits tissue factor expression in endothelial cells and monocytes. Deguchi, H., Takeya, H., Wada, H., Gabazza, E.C., Hayashi, N., Urano, H., Suzuki, K. Blood (1997) [Pubmed]
  8. Diameter change and pressure-red blood cell velocity relations in coronary microvessels during long diastoles in the canine left ventricle. Kanatsuka, H., Ashikawa, K., Komaru, T., Suzuki, T., Takishima, T. Circ. Res. (1990) [Pubmed]
  9. Dipyridamole and dilazep suppress oxygen radicals in puromycin aminonucleoside nephrosis rats. Nakamura, K., Kojima, K., Arai, T., Shirai, M., Usutani, S., Akimoto, H., Masaoka, H., Nagase, M., Yamamoto, M. Eur. J. Clin. Invest. (1998) [Pubmed]
  10. Silent cerebral infarction in patients with type 2 diabetic nephropathy. Effects of antiplatelet drug dilazep dihydrochloride. Nakamura, T., Kawagoe, Y., Matsuda, T., Ueda, Y., Ebihara, I., Koide, H. Diabetes Metab. Res. Rev. (2005) [Pubmed]
  11. Effect of dilazep hydrochlorideon the Im munohistopathology of IgA nephropathy in ddY mice. Hayashi, T., Kaneko, S., Thang, N.T., Shou, I., Shirato, I., Tomino, Y. Nephron (2000) [Pubmed]
  12. Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Ashikawa, K., Kanatsuka, H., Suzuki, T., Takishima, T. Circ. Res. (1986) [Pubmed]
  13. Mutation of residue 33 of human equilibrative nucleoside transporters 1 and 2 alters sensitivity to inhibition of transport by dilazep and dipyridamole. Visser, F., Vickers, M.F., Ng, A.M., Baldwin, S.A., Young, J.D., Cass, C.E. J. Biol. Chem. (2002) [Pubmed]
  14. Interaction of [3H]dilazep at nucleoside transporter-associated binding sites on S49 mouse lymphoma cells. Gati, W.P., Paterson, A.R. Mol. Pharmacol. (1989) [Pubmed]
  15. 2-chloroadenosine stimulates granule exocytosis from mouse natural killer cells: evidence for signal transduction through a novel extracellular receptor. Williams, B.A., Blay, J., Hoskin, D.W. Exp. Cell Res. (1997) [Pubmed]
  16. Significance of plasma adenosine in the antiplatelet activity of forskolin: potentiation by dipyridamole and dilazep. Agarwal, K.C., Zielinski, B.A., Maitra, R.S. Thromb. Haemost. (1989) [Pubmed]
  17. Effect of the antiplatelet drug dilazep dihydrochloride on urinary podocytes in patients in the early stage of diabetic nephropathy. Nakamura, T., Ushiyama, C., Shimada, N., Sekizuka, K., Ebihara, I., Hara, M., Koide, H. Diabetes Care (2000) [Pubmed]
  18. Decrease in equilibrative uridine transport during monocytic differentiation of HL-60 leukaemia: involvement of protein kinase C. Lee, C.W. Biochem. J. (1994) [Pubmed]
  19. Effects of verapamil, nifedipine, and dilazep on left ventricular relaxation in the conscious dog. Pagani, M., Pizzinelli, P., Furlan, R., Guzzetti, S., Rimoldi, O., Sandrone, G. Cardiovasc. Res. (1987) [Pubmed]
  20. 2'-deoxyadenosine induces apoptosis in rat chromaffin cells. Wakade, A.R., Guo, X., Palmer, K.C., Kulkarni, J.S., Przywara, D.A., Wakade, T.D. J. Neurochem. (1996) [Pubmed]
  21. Inhibition of nucleoside and nucleobase transport and nitrobenzylthioinosine binding by dilazep and hexobendine. Plagemann, P.G., Kraupp, M. Biochem. Pharmacol. (1986) [Pubmed]
  22. K-7259, a novel dilazep derivative, and d-propranolol attenuate H2O2-induced cell damage. Hoque, N., Hoque, A.N., Hashizume, H., Ichihara, K., Abiko, Y. J. Pharmacol. Exp. Ther. (1996) [Pubmed]
  23. Inhibition of glucose uptake in murine cardiomyocyte cell line HL-1 by cardioprotective drugs dilazep and dipyridamole. Shuralyova, I., Tajmir, P., Bilan, P.J., Sweeney, G., Coe, I.R. Am. J. Physiol. Heart Circ. Physiol. (2004) [Pubmed]
  24. Residue 33 of human equilibrative nucleoside transporter 2 is a functionally important component of both the dipyridamole and nucleoside binding sites. Visser, F., Zhang, J., Raborn, R.T., Baldwin, S.A., Young, J.D., Cass, C.E. Mol. Pharmacol. (2005) [Pubmed]
  25. Mutation of leucine-92 selectively reduces the apparent affinity of inosine, guanosine, NBMPR [S6-(4-nitrobenzyl)-mercaptopurine riboside] and dilazep for the human equilibrative nucleoside transporter, hENT1. Endres, C.J., Sengupta, D.J., Unadkat, J.D. Biochem. J. (2004) [Pubmed]
  26. Functional characterization of a recombinant sodium-dependent nucleoside transporter with selectivity for pyrimidine nucleosides (cNT1rat) by transient expression in cultured mammalian cells. Fang, X., Parkinson, F.E., Mowles, D.A., Young, J.D., Cass, C.E. Biochem. J. (1996) [Pubmed]
  27. Role of adenosine uptake and metabolism by blood cells in the antiplatelet actions of dipyridamole, dilazep and nitrobenzylthioinosine. Dawicki, D.D., Agarwal, K.C., Parks, R.E. Biochem. Pharmacol. (1985) [Pubmed]
  28. Molecular cloning and functional characterization of inhibitor-sensitive (mENT1) and inhibitor-resistant (mENT2) equilibrative nucleoside transporters from mouse brain. Kiss, A., Farah, K., Kim, J., Garriock, R.J., Drysdale, T.A., Hammond, J.R. Biochem. J. (2000) [Pubmed]
  29. Therapeutic tolerance, hemodynamic effects, and oral dose kinetics of dilazep dihydrochloride in hypertensive patients. Sambhi, M.P., Kannan, R., Thananopavarn, C., Ookhtens, M., Gudenzi, M. Journal of pharmaceutical sciences. (1989) [Pubmed]
  30. Effects of dilazep on coronary and systemic hemodynamics in humans. Marzilli, M., Simonetti, I., Levantesi, D., Trivella, M.G., De Nes, M., Perissinotto, A., Puntoni, R., Buzzigoli, G., Boni, C., Michelassi, C. Am. Heart J. (1984) [Pubmed]
WikiGenes - Universities