The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Ferric ion     iron(+3) cation

Synonyms: Ferric ions, ferric iron, Fe+3, Fe3+, Iron(3+), ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Fe+++

  • Iron is essential to life, but poses severe problems because of its toxicity and the insolubility of hydrated ferric ions at neutral pH [1].
  • We show that the ferric ion-binding protein from Neisseria gonorrhoeae (nFbp) readily binds clusters of Fe3+, Ti4+, Zr4+ or Hf4+ in solution [2].
  • Pyochelin, an endogenous growth promoter that solubilizes ferric iron, has been isolated from Pseudomonas aeruginosa, including clinical strains [3].
  • The first crystal structure of the iron-transporter ferric ion-binding protein from Haemophilus influenzae (hFBP), at 1.6 A resolution, reveals the structural basis for iron uptake and transport required by several important bacterial pathogens [4].
  • These assays showed that NorR, a homolog of NO-responsive transcription factors in Ralstonia eutrophus, and Fur, the global repressor of ferric ion uptake, are major regulators of the response to reactive nitrogen species [5].

Psychiatry related information on Fe+++

  • The fast process of contact binding is instantaneous with respect to instrument response time, is strongly exothermic for the N site and less so for the C site, and corresponds to binding of the chelated ferric ion [6].
  • We prepose that the reductase of M. paratuberculosis represents an alternative strategy of mycobacteria to mobilize ferric iron and discuss its potential role in bacterial evasion of intracellular defense mechanisms [7].

High impact information on Fe+++

  • Ferric iron accumulates in the cytosol of neurons and oligodendrocytes in distinctive regions of the brain [8].
  • Iron homeostasis is typically regulated by cytoplasmic iron binding proteins, but here we describe a signal transduction system (PmrA/PmrB) that responds to extracytoplasmic ferric iron [9].
  • Plasma iron circulates bound to transferrin (Trf), which solubilizes the ferric ion and attenuates its reactivity [10].
  • Biological formation of methane is the terminal process of biomass degradation in aquatic habitats where oxygen, nitrate, ferric iron and sulphate have been depleted as electron acceptors [11].
  • If iron bound to transferrin is the source of ferric ions for malaria parasites within mature erythrocytes, then the parasite must synthesize its own transferrin receptor and localize it on the surface of the infected cell, because the receptors for transferrin are lost during erythrocyte maturation [12].

Chemical compound and disease context of Fe+++


Biological context of Fe+++


Anatomical context of Fe+++

  • We report here that bones from the region of the sphenoid/ethmoid sinus complex of humans are magnetic and contain deposits of ferric iron [23].
  • The ability of intestinal mucosa to absorb dietary ferric iron is attributed to the presence of a brush-border membrane reductase activity that displays adaptive responses to iron status [24].
  • To test the hypothesis that the pathologic deposits of free ferric iron located on the inner aspect of sickle cell membranes would be redox active and promote oxidation of soluble oxyhemoglobin, we incubated native versus iron-stripped sickle or normal ghost membranes with oxyhemoglobin S [25].
  • Hepatic mitochondria isolated from copper-deficient animals were deficient in cytochrome oxidase activity and failed to synthesize heme from ferric iron (Fe III) and protoporphyrin at the normal rate [26].
  • The fission yeast ferric reductase gene frp1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase [27].

Associations of Fe+++ with other chemical compounds


Gene context of Fe+++


Analytical, diagnostic and therapeutic context of Fe+++


  1. Dealing with iron: common structural principles in proteins that transport iron and heme. Baker, H.M., Anderson, B.F., Baker, E.N. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  2. A novel protein-mineral interface. Alexeev, D., Zhu, H., Guo, M., Zhong, W., Hunter, D.J., Yang, W., Campopiano, D.J., Sadler, P.J. Nat. Struct. Biol. (2003) [Pubmed]
  3. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Cox, C.D., Rinehart, K.L., Moore, M.L., Cook, J.C. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  4. Structure of Haemophilus influenzae Fe(+3)-binding protein reveals convergent evolution within a superfamily. Bruns, C.M., Nowalk, A.J., Arvai, A.S., McTigue, M.A., Vaughan, K.G., Mietzner, T.A., McRee, D.E. Nat. Struct. Biol. (1997) [Pubmed]
  5. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Mukhopadhyay, P., Zheng, M., Bedzyk, L.A., LaRossa, R.A., Storz, G. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  6. Calorimetric studies of the binding of ferric ions to ovotransferrin and interactions between binding sites. Lin, L.N., Mason, A.B., Woodworth, R.C., Brandts, J.F. Biochemistry (1991) [Pubmed]
  7. Identification and characterization of a novel extracellular ferric reductase from Mycobacterium paratuberculosis. Homuth, M., Valentin-Weigand, P., Rohde, M., Gerlach, G.F. Infect. Immun. (1998) [Pubmed]
  8. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. LaVaute, T., Smith, S., Cooperman, S., Iwai, K., Land, W., Meyron-Holtz, E., Drake, S.K., Miller, G., Abu-Asab, M., Tsokos, M., Switzer, R., Grinberg, A., Love, P., Tresser, N., Rouault, T.A. Nat. Genet. (2001) [Pubmed]
  9. A signal transduction system that responds to extracellular iron. Wösten, M.M., Kox, L.F., Chamnongpol, S., Soncini, F.C., Groisman, E.A. Cell (2000) [Pubmed]
  10. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Levy, J.E., Jin, O., Fujiwara, Y., Kuo, F., Andrews, N.C. Nat. Genet. (1999) [Pubmed]
  11. Methane formation from long-chain alkanes by anaerobic microorganisms. Zengler, K., Richnow, H.H., Rosselló-Mora, R., Michaelis, W., Widdel, F. Nature (1999) [Pubmed]
  12. A protein on Plasmodium falciparum-infected erythrocytes functions as a transferrin receptor. Rodriguez, M.H., Jungery, M. Nature (1986) [Pubmed]
  13. Deferoxamine: a reversible S-phase inhibitor of human lymphocyte proliferation. Lederman, H.M., Cohen, A., Lee, J.W., Freedman, M.H., Gelfand, E.W. Blood (1984) [Pubmed]
  14. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Miethke, M., Klotz, O., Linne, U., May, J.J., Beckering, C.L., Marahiel, M.A. Mol. Microbiol. (2006) [Pubmed]
  15. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Quadri, L.E., Sello, J., Keating, T.A., Weinreb, P.H., Walsh, C.T. Chem. Biol. (1998) [Pubmed]
  16. Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans. Sears, H.J., Bennett, B., Spiro, S., Thomson, A.J., Richardson, D.J. Biochem. J. (1995) [Pubmed]
  17. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Ehrenreich, A., Widdel, F. Appl. Environ. Microbiol. (1994) [Pubmed]
  18. Siderophore electrochemistry: relation to intracellular iron release mechanism. Cooper, S.R., McArdle, J.V., Raymond, K.N. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  19. Reversed siderophores act as antimalarial agents. Shanzer, A., Libman, J., Lytton, S.D., Glickstein, H., Cabantchik, Z.I. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  20. Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Gattermann, N., Retzlaff, S., Wang, Y.L., Hofhaus, G., Heinisch, J., Aul, C., Schneider, W. Blood (1997) [Pubmed]
  21. Structural dynamics controls nitric oxide affinity in nitrophorin 4. Nienhaus, K., Maes, E.M., Weichsel, A., Montfort, W.R., Nienhaus, G.U. J. Biol. Chem. (2004) [Pubmed]
  22. Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. Zweier, J.L., Broderick, R., Kuppusamy, P., Thompson-Gorman, S., Lutty, G.A. J. Biol. Chem. (1994) [Pubmed]
  23. Magnetic bones in human sinuses. Baker, R.R., Mather, J.G., Kennaugh, J.H. Nature (1983) [Pubmed]
  24. An iron-regulated ferric reductase associated with the absorption of dietary iron. McKie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M., Richardson, C., Barlow, D., Bomford, A., Peters, T.J., Raja, K.B., Shirali, S., Hediger, M.A., Farzaneh, F., Simpson, R.J. Science (2001) [Pubmed]
  25. Catalysis of soluble hemoglobin oxidation by free iron on sickle red cell membranes. Shalev, O., Hebbel, R.P. Blood (1996) [Pubmed]
  26. Role of copper in mitochondrial iron metabolism. Williams, D.M., Loukopoulos, D., Lee, G.R., Cartwright, G.E. Blood (1976) [Pubmed]
  27. The fission yeast ferric reductase gene frp1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase. Roman, D.G., Dancis, A., Anderson, G.J., Klausner, R.D. Mol. Cell. Biol. (1993) [Pubmed]
  28. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. Weiss, G., Werner-Felmayer, G., Werner, E.R., Grünewald, K., Wachter, H., Hentze, M.W. J. Exp. Med. (1994) [Pubmed]
  29. UbcH5A, a member of human E2 ubiquitin-conjugating enzymes, is closely related to SFT, a stimulator of iron transport, and is up-regulated in hereditary hemochromatosis. Gehrke, S.G., Riedel, H.D., Herrmann, T., Hadaschik, B., Bents, K., Veltkamp, C., Stremmel, W. Blood (2003) [Pubmed]
  30. Ferric ions are essential for the biological activity of the hormone glycine-extended gastrin. Pannequin, J., Barnham, K.J., Hollande, F., Shulkes, A., Norton, R.S., Baldwin, G.S. J. Biol. Chem. (2002) [Pubmed]
  31. Iodide as the mediator for the reductive reactions of peroxidases. Shah, M.M., Aust, S.D. J. Biol. Chem. (1993) [Pubmed]
  32. Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. Woodmansee, A.N., Imlay, J.A. J. Biol. Chem. (2002) [Pubmed]
  33. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. Yun, C.W., Bauler, M., Moore, R.E., Klebba, P.E., Philpott, C.C. J. Biol. Chem. (2001) [Pubmed]
  34. Assembly, Activation, and Trafficking of the Fet3p{middle dot}Ftr1p High Affinity Iron Permease Complex in Saccharomyces cerevisiae. Singh, A., Severance, S., Kaur, N., Wiltsie, W., Kosman, D.J. J. Biol. Chem. (2006) [Pubmed]
  35. Site-directed mutagenesis of the yeast multicopper oxidase Fet3p. Askwith, C.C., Kaplan, J. J. Biol. Chem. (1998) [Pubmed]
  36. Composition of pH-sensitive triad in C-lobe of human serum transferrin. Comparison to sequences of ovotransferrin and lactoferrin provides insight into functional differences in iron release. Halbrooks, P.J., Giannetti, A.M., Klein, J.S., Björkman, P.J., Larouche, J.R., Smith, V.C., MacGillivray, R.T., Everse, S.J., Mason, A.B. Biochemistry (2005) [Pubmed]
  37. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Broadwell, R.D., Baker-Cairns, B.J., Friden, P.M., Oliver, C., Villegas, J.C. Exp. Neurol. (1996) [Pubmed]
  38. EPR signal, purple color, and iron binding in porcine uteroferrin. Antanaitis, B.C., Aisen, P. J. Biol. Chem. (1982) [Pubmed]
  39. Evidence for the formation of a linear [3Fe-4S] cluster in partially unfolded aconitase. Kennedy, M.C., Kent, T.A., Emptage, M., Merkle, H., Beinert, H., Münck, E. J. Biol. Chem. (1984) [Pubmed]
  40. Tandem mass spectrometry identifies sites of three post-translational modifications of spinach light-harvesting chlorophyll protein II. Proteolytic cleavage, acetylation, and phosphorylation. Michel, H., Griffin, P.R., Shabanowitz, J., Hunt, D.F., Bennett, J. J. Biol. Chem. (1991) [Pubmed]
  41. Source of residual Bohr effect in hemoglobin oxidation. Bull, C., Goncher, G., Deutschman, C.S., Hoffman, B.M. J. Biol. Chem. (1977) [Pubmed]
  42. Calorimetric studies of melanotransferrin (p97) and its interaction with iron. Creagh, A.L., Tiong, J.W., Tian, M.M., Haynes, C.A., Jefferies, W.A. J. Biol. Chem. (2005) [Pubmed]
WikiGenes - Universities