The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

SureCN8322726     3,4,7,8-tetrahydroquinoline

Synonyms: CTK1A5526, AR-1E8996, AC1L3S23, AC1Q4V0M, 25448-04-8, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of EINECS 246-995-7

  • Studies with malaria-infected mice show that THQ PFTIs dramatically reduce parasitemia and lead to parasite eradication in the majority of animals [1].
  • In the course of screening for free radical scavengers, rare metabolites, benzastatins A and B having aminobenzamide skeleton and benzastatins C and D having tetrahydroquinoline skeleton, were isolated from the culture broth of streptomyces nitrosporeus 30643 [2].
 

Psychiatry related information on EINECS 246-995-7

 

High impact information on EINECS 246-995-7

  • The resultant tyrosine 837 to cysteine alteration in the beta subunit corresponded to the binding site for the THQ and peptide substrate [4].
  • The binding characteristics of [3H]L-689,560 [(+/-)-4-(trans)-2-carboxy-5,7-dichloro-4-phenylaminocarbonylamino -1,2,3,4- tetrahydroquinoline], a selective antagonist for the glycine site on the N-methyl-D-aspartate receptor, have been evaluated using rat cortex/hippocampus P2 membranes [5].
  • Additional improvements in activity were obtained by modification of the substituents on the tetrahydroquinoline nitrogen, bringing the Ki of three of the compounds below 15 nM against the human TS enzyme [6].
  • [reaction: see text] Highly enantioselective rhodium-catalyzed asymmetric hydrogenation (>98% ee) and Sharpless epoxidation (>90% ee) of o-nitrocinnamyl substrates lead to intermediates that can be transformed into tetrahydroquinoline derivatives [7].
  • Previously, we have shown that parasites resistant to a tetrahydroquinoline (THQ)-based PFT inhibitor BMS-388891 have mutations leading to amino acid substitutions in PFT that map to the peptide substrate binding domain [8].
 

Biological context of EINECS 246-995-7

 

Anatomical context of EINECS 246-995-7

 

Gene context of EINECS 246-995-7

 

Analytical, diagnostic and therapeutic context of EINECS 246-995-7

  • Thus, a series of tetrahydroquinoline products were obtained in high purity by simple filtration, and the resin was recovered for reuse without loss of activity [16].
  • The preferred conformation of the trans-2,4-disubstituted tetrahydroquinoline system, as shown by X-ray crystallography and 1H NMR studies, places the 2-carboxyl pseudoequatorial and the 4-substituent pseudoaxial [17].
  • Galipea officinalis Hancock, a Venezuelan shrubby tree which is acclaimed in folk medicine for its many healing properties, is the only species of the genus to contain tetrahydroquinoline alkaloids [18].

References

  1. Protein farnesyltransferase inhibitors exhibit potent antimalarial activity. Nallan, L., Bauer, K.D., Bendale, P., Rivas, K., Yokoyama, K., Hornéy, C.P., Pendyala, P.R., Floyd, D., Lombardo, L.J., Williams, D.K., Hamilton, A., Sebti, S., Windsor, W.T., Weber, P.C., Buckner, F.S., Chakrabarti, D., Gelb, M.H., Van Voorhis, W.C. J. Med. Chem. (2005) [Pubmed]
  2. Benzastatins A, B, C, and D: new free radical scavengers from Streptomyces nitrosporeus 30643. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. Kim, W.G., Kim, J.P., Kim, C.J., Lee, K.H., Yoo, I.D. J. Antibiot. (1996) [Pubmed]
  3. Tetrahydroquinoline sulfonamides as gamma-secretase inhibitors. Asberom, T., Bara, T.A., Clader, J.W., Greenlee, W.J., Guzik, H.S., Josien, H.B., Li, W., Parker, E.M., Pissarnitski, D.A., Song, L., Zhang, L., Zhao, Z. Bioorg. Med. Chem. Lett. (2007) [Pubmed]
  4. Resistance to a protein farnesyltransferase inhibitor in Plasmodium falciparum. Eastman, R.T., White, J., Hucke, O., Bauer, K., Yokoyama, K., Nallan, L., Chakrabarti, D., Verlinde, C.L., Gelb, M.H., Rathod, P.K., Van Voorhis, W.C. J. Biol. Chem. (2005) [Pubmed]
  5. Characterization of the binding of [3H]L-689,560, an antagonist for the glycine site on the N-methyl-D-aspartate receptor, to rat brain membranes. Grimwood, S., Moseley, A.M., Carling, R.W., Leeson, P.D., Foster, A.C. Mol. Pharmacol. (1992) [Pubmed]
  6. Design and synthesis of novel 6,7-imidazotetrahydroquinoline inhibitors of thymidylate synthase using iterative protein crystal structure analysis. Reich, S.H., Fuhry, M.A., Nguyen, D., Pino, M.J., Welsh, K.M., Webber, S., Janson, C.A., Jordan, S.R., Matthews, D.A., Smith, W.W. J. Med. Chem. (1992) [Pubmed]
  7. Asymmetric synthesis of functionalized 1,2,3,4-tetrahydroquinolines. Gallou-Dagommer, I., Gastaud, P., RajanBabu, T.V. Org. Lett. (2001) [Pubmed]
  8. Resistance mutations at the lipid substrate binding site of Plasmodium falciparum protein farnesyltransferase. Eastman, R.T., White, J., Hucke, O., Yokoyama, K., Verlinde, C.L., Hast, M.A., Beese, L.S., Gelb, M.H., Rathod, P.K., Van Voorhis, W.C. Mol. Biochem. Parasitol. (2007) [Pubmed]
  9. Antiplasmodial and cytotoxic activity of galipinine and other tetrahydroquinolines from Galipea officinalis. Jacquemond-Collet, I., Benoit-Vical, F., Valentin, A., Stanislas, E., Mallié, M., Fourasté, I. Planta Med. (2002) [Pubmed]
  10. Design, synthesis, and structure-activity relationships of tetrahydroquinoline-based farnesyltransferase inhibitors. Lombardo, L.J., Camuso, A., Clark, J., Fager, K., Gullo-Brown, J., Hunt, J.T., Inigo, I., Kan, D., Koplowitz, B., Lee, F., McGlinchey, K., Qian, L., Ricca, C., Rovnyak, G., Traeger, S., Tokarski, J., Williams, D.K., Wu, L.I., Zhao, Y., Manne, V., Bhide, R.S. Bioorg. Med. Chem. Lett. (2005) [Pubmed]
  11. Piperidine-renin inhibitors compounds with improved physicochemical properties. Güller, R., Binggeli, A., Breu, V., Bur, D., Fischli, W., Hirth, G., Jenny, C., Kansy, M., Montavon, F., Müller, M., Oefner, C., Stadler, H., Vieira, E., Wilhelm, M., Wostl, W., Märki, H.P. Bioorg. Med. Chem. Lett. (1999) [Pubmed]
  12. Indole synthesis by radical cyclization of o-alkenylphenyl isocyanides and its application to the total synthesis of natural products. Tokuyama, H., Fukuyama, T. Chemical record (New York, N.Y.) (2002) [Pubmed]
  13. Differential effects of the novel non-peptidic opioid 4-tyrosylamido-6-benzyl-1,2,3,4 tetrahydroquinoline (CGPM-9) on in vitro rat t lymphocyte and macrophage functions. Hicks, M.E., Gomez-Flores, R., Wang, C., Mosberg, H.I., Weber, R.J. Life Sci. (2001) [Pubmed]
  14. Enantiomerically pure tetrahydroquinoline derivatives as in vivo potent antagonists of the glycine binding site associated to the NMDA receptor. Di Fabio, R., Tranquillini, E., Bertani, B., Alvaro, G., Micheli, F., Sabbatini, F., Pizzi, M.D., Pentassuglia, G., Pasquarello, A., Messeri, T., Donati, D., Ratti, E., Arban, R., Dal Forno, G., Reggiani, A., Barnaby, R.J. Bioorg. Med. Chem. Lett. (2003) [Pubmed]
  15. First QSAR report on FSH receptor antagonistic activity: quantitative investigations on physico-chemical and structural features among 6-amino-4-phenyltetrahydroquinoline derivatives. Manivannan, E., Prasanna, S. Bioorg. Med. Chem. Lett. (2005) [Pubmed]
  16. Polymer-supported benzotriazoles as catalysts in the synthesis of tetrahydroquinolines by condensation of aldehydes with aromatic amines. Talukdar, S., Chen, R.J., Chen, C.T., Lo, L.C., Fang, J.M. Journal of combinatorial chemistry. (2001) [Pubmed]
  17. 4-Amido-2-carboxytetrahydroquinolines. Structure-activity relationships for antagonism at the glycine site of the NMDA receptor. Leeson, P.D., Carling, R.W., Moore, K.W., Moseley, A.M., Smith, J.D., Stevenson, G., Chan, T., Baker, R., Foster, A.C., Grimwood, S. J. Med. Chem. (1992) [Pubmed]
  18. Identification of the alkaloids of Galipea officinalis by gas chromatography-mass spectrometry. Jacquemond-Collet, I., Bessière, J.M., Hannedouche, S., Bertrand, C., Fourasté, I., Moulis, C. Phytochemical analysis : PCA. (2001) [Pubmed]
 
WikiGenes - Universities