The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

SCO7221  -  polyketide synthase

Streptomyces coelicolor A3(2)

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SCO7221

  • The single recombinant expressing the Streptomyces coelicolor minimal whiE (spore pigment) polyketide synthase (PKS) is uniquely capable of generating a large array of well more than 30 polyketides, many of which, so far, are novel to this recombinant [1].
  • The parent strain, BAP1, contains the sfp phosphopantetheinyl transferase gene from Bacillus subtilis, which posttranslationally modifies polyketide synthase and nonribosomal peptide synthetase modules [2].
  • The data show that the actinorhodin PKS consists of discrete monofunctional components, like that of the Escherichia coli (Type II) FAS, rather than the multifunctional polypeptides for the macrolide PKSs and vertebrate FASs (Type I) [3].
  • The actI gene, encoding a component of the actinorhodin polyketide synthase of Streptomyces coelicolor, was used to identify and clone a homologous 11.7 kb BamHI DNA fragment from Saccharopolyspora hirsuta 367 [4].
 

High impact information on SCO7221

  • Their biosynthetic pathways are especially complex because they involve the formation of 3-amino-5-hydroxybenzoic acid (AHBA) followed by backbone assembly by a hybrid nonribosomal peptide synthetase/polyketide synthase [2].
  • This combinatorial biosynthetic library is, by far, the largest and most complex of its kind described to date and indicates that the minimal whiE PKS does not independently control polyketide chain length nor dictate the first cyclization event [1].
  • RppA is a type III polyketide synthase (PKS) that catalyzes condensation of five molecules of malonyl-CoA to form 1,3,6,8-tetrahydroxynaphthalene (THN) [5].
  • CYP158A2 has been suggested to produce polymers of flaviolin, a pigment that may protect microbes from UV radiation, in combination with the adjacent rppA gene, which encodes the type III polyketide synthase, 1,3,6,8-tetrahydroxynaphthalene synthase [6].
  • Here we present the first bacterial type III PKS crystal structure, that of Streptomyces coelicolor THNS, and identify by mutagenesis, structural modeling, and chemical analysis the unexpected catalytic participation of an additional THNS-conserved cysteine residue in facilitating malonyl-primed polyketide extension beyond the triketide stage [7].
 

Chemical compound and disease context of SCO7221

 

Biological context of SCO7221

  • We propose that these alternative specificities may be due to the ability of downstream enzymes to associate with the minimal PKS and to selectively inhibit a particular branch of the cyclization pathway [13].
  • Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin [3].
  • DNA sequence analysis of a 33-kb region revealed a cluster of 14 open reading frames (ORFs), three of which (ORF4, ORF5, and ORF6) encode type I polyketide synthase (PKS), which consists of four modules [14].
  • The tcmN N-terminal domain can be separated from the remainder of the tcmN gene product, and when coupled on a plasmid with the Tcm C polyketide synthase genes (tcmKLM), this domain enables high-level production of an early, partially cyclized intermediate of Tcm C in a Tcm C- null mutant or in a heterologous host (Streptomyces lividans) [15].
  • Replacement of the gris genes with a marker gene in the S. griseus genome by using a single-stranded suicide vector propagated in Escherichia coli resulted in loss of the ability to produce griseusins A and B, showing that the five gris genes do indeed encode the type II griseusin PKS [16].
 

Associations of SCO7221 with chemical compounds

  • In bacteria, a structurally simple type III polyketide synthase (PKS) known as 1,3,6,8-tetrahydroxynaphthlene synthase (THNS) catalyzes the iterative condensation of five CoA-linked malonyl units to form a pentaketide intermediate [7].
  • The five ORFs show high sequence similarities to ORFs that were previously identified in the granaticin, actinorhodin, tetracenomycin and whiE PKS gene clusters [10].
  • This review highlights our progress on the biochemical and genetic characterization of recently identified streptomycete biosynthetic pathways to benzoic acid and type III polyketide synthase (PKS)-derived products [17].
  • A modular polyketide synthase (PKS) directs 6-dEB synthesis using a dedicated set of active sites for the condensation of each of seven propionate units [18].
  • Precursor-directed biosynthesis of 6-deoxyerythronolide B analogues is improved by removal of the initial catalytic sites of the polyketide synthase [19].
 

Analytical, diagnostic and therapeutic context of SCO7221

  • Sequence analysis of three overlapping DNA fragments (encompassing 15,100 bp) revealed 15 open reading frames, the majority of which showed high similarity to the previously characterized type II polyketide synthase genes [20].
  • Heterologous expression of an engineered biosynthetic pathway: functional dissection of type II polyketide synthase components in Streptomyces species [21].
  • Using western blot analysis with a PKS subunit (CpkC) antibody, CpkC was shown to be expressed in S. coelicolor at transition phase [22].

References

  1. Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes. Shen, Y., Yoon, P., Yu, T.W., Floss, H.G., Hopwood, D., Moore, B.S. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  2. Engineered biosynthesis of an ansamycin polyketide precursor in Escherichia coli. Watanabe, K., Rude, M.A., Walsh, C.T., Khosla, C. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  3. Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. Fernández-Moreno, M.A., Martínez, E., Boto, L., Hopwood, D.A., Malpartida, F. J. Biol. Chem. (1992) [Pubmed]
  4. Saccharopolyspora hirsuta 367 encodes clustered genes similar to ketoacyl synthase, ketoacyl reductase, acyl carrier protein, and biotin carboxyl carrier protein. Le Gouill, C., Desmarais, D., Déry, C.V. Mol. Gen. Genet. (1993) [Pubmed]
  5. A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides. Funa, N., Funabashi, M., Yoshimura, E., Horinouchi, S. J. Biol. Chem. (2005) [Pubmed]
  6. Binding of two flaviolin substrate molecules, oxidative coupling, and crystal structure of Streptomyces coelicolor A3(2) cytochrome P450 158A2. Zhao, B., Guengerich, F.P., Bellamine, A., Lamb, D.C., Izumikawa, M., Lei, L., Podust, L.M., Sundaramoorthy, M., Kalaitzis, J.A., Reddy, L.M., Kelly, S.L., Moore, B.S., Stec, D., Voehler, M., Falck, J.R., Shimada, T., Waterman, M.R. J. Biol. Chem. (2005) [Pubmed]
  7. Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates. Austin, M.B., Izumikawa, M., Bowman, M.E., Udwary, D.W., Ferrer, J.L., Moore, B.S., Noel, J.P. J. Biol. Chem. (2004) [Pubmed]
  8. Inactivation, complementation, and heterologous expression of encP, a novel bacterial phenylalanine ammonia-lyase gene. Xiang, L., Moore, B.S. J. Biol. Chem. (2002) [Pubmed]
  9. Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. Ye, J., Dickens, M.L., Plater, R., Li, Y., Lawrence, J., Strohl, W.R. J. Bacteriol. (1994) [Pubmed]
  10. Characterisation of actI-homologous DNA encoding polyketide synthase genes from the monensin producer Streptomyces cinnamonensis. Arrowsmith, T.J., Malpartida, F., Sherman, D.H., Birch, A., Hopwood, D.A., Robinson, J.A. Mol. Gen. Genet. (1992) [Pubmed]
  11. Chip-based polyketide biosynthesis and functionalization. Ku, B., Cha, J., Srinivasan, A., Kwon, S.J., Jeong, J.C., Sherman, D.H., Dordick, J.S. Biotechnol. Prog. (2006) [Pubmed]
  12. Approaches to stabilization of inter-domain recombination in polyketide synthase gene expression plasmids. Hu, Z., Desai, R.P., Volchegursky, Y., Leaf, T., Woo, E., Licari, P., Santi, D.V., Hutchinson, C.R., McDaniel, R. J. Ind. Microbiol. Biotechnol. (2003) [Pubmed]
  13. Engineered biosynthesis of novel polyketides: influence of a downstream enzyme on the catalytic specificity of a minimal aromatic polyketide synthase. McDaniel, R., Ebert-Khosla, S., Fu, H., Hopwood, D.A., Khosla, C. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  14. Cloning, sequencing, and functional analysis of an iterative type I polyketide synthase gene cluster for biosynthesis of the antitumor chlorinated polyenone neocarzilin in "Streptomyces carzinostaticus". Otsuka, M., Ichinose, K., Fujii, I., Ebizuka, Y. Antimicrob. Agents Chemother. (2004) [Pubmed]
  15. Nucleotide sequence of the tcmII-tcmIV region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens and evidence that the tcmN gene encodes a multifunctional cyclase-dehydratase-O-methyl transferase. Summers, R.G., Wendt-Pienkowski, E., Motamedi, H., Hutchinson, C.R. J. Bacteriol. (1992) [Pubmed]
  16. Cloning, sequencing, and analysis of the griseusin polyketide synthase gene cluster from Streptomyces griseus. Yu, T.W., Bibb, M.J., Revill, W.P., Hopwood, D.A. J. Bacteriol. (1994) [Pubmed]
  17. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. Moore, B.S., Hertweck, C., Hopke, J.N., Izumikawa, M., Kalaitzis, J.A., Nilsen, G., O'Hare, T., Piel, J., Shipley, P.R., Xiang, L., Austin, M.B., Noel, J.P. J. Nat. Prod. (2002) [Pubmed]
  18. Saccharopolyspora erythraea-catalyzed bioconversion of 6-deoxyerythronolide B analogs for production of novel erythromycins. Carreras, C., Frykman, S., Ou, S., Cadapan, L., Zavala, S., Woo, E., Leaf, T., Carney, J., Burlingame, M., Patel, S., Ashley, G., Licari, P. J. Biotechnol. (2002) [Pubmed]
  19. Precursor-directed biosynthesis of 6-deoxyerythronolide B analogues is improved by removal of the initial catalytic sites of the polyketide synthase. Ward, S.L., Desai, R.P., Hu, Z., Gramajo, H., Katz, L. J. Ind. Microbiol. Biotechnol. (2007) [Pubmed]
  20. Cloning and characterization of a polyketide synthase gene cluster involved in biosynthesis of a proposed angucycline-like polyketide auricin in Streptomyces aureofaciens CCM 3239. Novakova, R., Bistakova, J., Homerova, D., Rezuchova, B., Kormanec, J. Gene (2002) [Pubmed]
  21. Heterologous expression of an engineered biosynthetic pathway: functional dissection of type II polyketide synthase components in Streptomyces species. Kim, E.S., Cramer, K.D., Shreve, A.L., Sherman, D.H. J. Bacteriol. (1995) [Pubmed]
  22. A cryptic type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2). Pawlik, K., Kotowska, M., Chater, K.F., Kuczek, K., Takano, E. Arch. Microbiol. (2007) [Pubmed]
 
WikiGenes - Universities