The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

DARS  -  aspartyl-tRNA synthetase

Homo sapiens

Synonyms: AspRS, Aspartate--tRNA ligase, cytoplasmic, Aspartyl-tRNA synthetase, Cell proliferation-inducing gene 40 protein, HBSL, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of DARS

  • Expression of human aspartyl-tRNA synthetase in Escherichia coli. Functional analysis of the N-terminal putative amphiphilic helix [1].
  • Here, we report the first characterization of the ND-AspRS from the human pathogen Helicobacter pylori (H. pylori or Hp) [2].
  • The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity [2].
  • These include the plant sweetening protein, thaumatin, from Thaumatococcus daniellii; the aspartyl-tRNA synthetase from Thermus thermophilus; and pea lectin from Pisum sativum [3].
  • Asparaginyl-tRNA formation in Pseudomonas aeruginosa PAO1 involves a nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) which forms Asp-tRNA(Asp) and Asp-tRNA(Asn), and a tRNA-dependent amidotransferase which transamidates the latter into Asn-tRNA(Asn) [4].
 

High impact information on DARS

 

Biological context of DARS

 

Anatomical context of DARS

 

Associations of DARS with chemical compounds

  • Full-length human AspRS, but not amino-terminal 32 residue-deleted, fully active AspRS, was found to bind to noncognate tRNA(fMet) in the presence of Mg(2+) [13].
  • Thus, in addition to their structural and catalytic roles, the Mg2+ cations contribute to specificity in AspRS through long range electrostatic interactions with the Asp side chain in both the pre- and post-adenylation states [14].
  • Molecular dynamics simulations show that bound Mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-tRNA synthetase through long range electrostatic interactions [14].
  • Replacing this glycine by an aspartate renders human mt-AspRS more discriminative to G73 [15].
  • To obtain insight into the origin of the specificity, the binding to aspartyl-tRNA synthetase (AspRS) of the negatively charged substrate aspartic acid and the neutral analogue asparagine are compared by use of molecular dynamics and free energy simulations [16].
 

Other interactions of DARS

References

  1. Expression of human aspartyl-tRNA synthetase in Escherichia coli. Functional analysis of the N-terminal putative amphiphilic helix. Escalante, C., Yang, D.C. J. Biol. Chem. (1993) [Pubmed]
  2. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Chuawong, P., Hendrickson, T.L. Biochemistry (2006) [Pubmed]
  3. Space-grown protein crystals are more useful for structure determination. Ng, J.D. Ann. N. Y. Acad. Sci. (2002) [Pubmed]
  4. Inhibition by L-aspartol adenylate of a nondiscriminating aspartyl-tRNA synthetase reveals differences between the interactions of its active site with tRNA(Asp) and tRNA(Asn). Bernard, D., Akochy, P.M., Bernier, S., Fisette, O., Brousseau, O.C., Chênevert, R., Roy, P.H., Lapointe, J. J Enzyme Inhib Med Chem (2007) [Pubmed]
  5. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Scheper, G.C., van der Klok, T., van Andel, R.J., van Berkel, C.G., Sissler, M., Smet, J., Muravina, T.I., Serkov, S.V., Uziel, G., Bugiani, M., Schiffmann, R., Krägeloh-Mann, I., Smeitink, J.A., Florentz, C., Van Coster, R., Pronk, J.C., van der Knaap, M.S. Nat. Genet. (2007) [Pubmed]
  6. Free energy simulations come of age: protein-ligand recognition. Simonson, T., Archontis, G., Karplus, M. Acc. Chem. Res. (2002) [Pubmed]
  7. Structure of small protein B: the protein component of the tmRNA-SmpB system for ribosome rescue. Dong, G., Nowakowski, J., Hoffman, D.W. EMBO J. (2002) [Pubmed]
  8. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. Cavarelli, J., Eriani, G., Rees, B., Ruff, M., Boeglin, M., Mitschler, A., Martin, F., Gangloff, J., Thierry, J.C., Moras, D. EMBO J. (1994) [Pubmed]
  9. Efficient aminoacylation of resected RNA helices by class II aspartyl-tRNA synthetase dependent on a single nucleotide. Frugier, M., Florentz, C., Giegé, R. EMBO J. (1994) [Pubmed]
  10. Mechanisms of the transfer of aminoacyl-tRNA from aminoacyl-tRNA synthetase to the elongation factor 1 alpha. Reed, V.S., Wastney, M.E., Yang, D.C. J. Biol. Chem. (1994) [Pubmed]
  11. cDNA sequence, predicted primary structure, and evolving amphiphilic helix of human aspartyl-tRNA synthetase. Jacobo-Molina, A., Peterson, R., Yang, D.C. J. Biol. Chem. (1989) [Pubmed]
  12. Expression of human aspartyl-tRNA synthetase in COS cells. Escalante, C., Qasba, P.K., Yang, D.C. Mol. Cell. Biochem. (1994) [Pubmed]
  13. Magnesium ion-mediated binding to tRNA by an amino-terminal peptide of a class II tRNA synthetase. Hammamieh, R., Yang, D.C. J. Biol. Chem. (2001) [Pubmed]
  14. Molecular dynamics simulations show that bound Mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-tRNA synthetase through long range electrostatic interactions. Thompson, D., Simonson, T. J. Biol. Chem. (2006) [Pubmed]
  15. Loss of a primordial identity element for a mammalian mitochondrial aminoacylation system. Fender, A., Sauter, C., Messmer, M., Pütz, J., Giegé, R., Florentz, C., Sissler, M. J. Biol. Chem. (2006) [Pubmed]
  16. Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations. Archontis, G., Simonson, T., Moras, D., Karplus, M. J. Mol. Biol. (1998) [Pubmed]
  17. Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Rho, S.B., Kim, M.J., Lee, J.S., Seol, W., Motegi, H., Kim, S., Shiba, K. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  18. Characterization of a novel N-terminal peptide in human aspartyl-tRNA synthetase. Roles in the transfer of aminoacyl-tRNA from aminoacyl-tRNA synthetase to the elongation factor 1 alpha. Reed, V.S., Yang, D.C. J. Biol. Chem. (1994) [Pubmed]
  19. Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases. Jakubowski, H. Biochemistry (1997) [Pubmed]
  20. Visualizing the dual space of biological molecules. Eargle, J., Luthey-Schulten, Z. Computational biology and chemistry. (2006) [Pubmed]
 
WikiGenes - Universities