The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Peas

  • Toward this goal, we have cloned the alpha and beta subunits of the ch-cpn60 of pea (Pisum sativum), expressed them individually in Escherichia coli, and subjected the purified monomers to in vitro reconstitution experiments [1].
  • PsCYP15A is a cysteine protease from pea (Pisum sativum L.). It was first recognized as an up-regulated transcript in wilted shoots and subsequently in root nodules containing Rhizobium [2].
  • Purification and partial characterization of a glycoprotein from pea (Pisum sativum) with receptor activity for rhicadhesin, an attachment protein of Rhizobiaceae [3].
  • A gene encoding the preproprotein of the pea (Pisum sativum) lectin was expressed in transgenic potato plants using a cauliflower mosaic virus (CaMV) 35S promoter or a tobacco ribulose bisphosphate carboxylase small subunit (ssRubisco) promoter [4].
  • Cyanide as a copper and quinone-directed inhibitor of amine oxidases from pea seedlings ( Pisum sativum) and Arthrobacter globiformis: evidence for both copper coordination and cyanohydrin derivatization of the quinone cofactor [5].

High impact information on Peas

  • Nucleotide sequence analysis of cDNAs for asparagine synthetase (AS) of Pisum sativum has uncovered two distinct AS mRNAs (AS1 and AS2) encoding polypeptides that are highly homologous to the human AS enzyme [6].
  • Dark-induced and organ-specific expression of two asparagine synthetase genes in Pisum sativum [6].
  • The role of transit peptides in intraorganellar targeting has been studied for a chlorophyll a/b binding (CAB) polypeptide of photosystem II (PSII) and the small subunit of ribulose-1,5-bisphosphate carboxylase (RBCS) from Pisum sativum (pea) [7].
  • A collection of 17 monoclonal antibodies elicited against the light-harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity [8].
  • Membrane preparations from growing regions of 8-day old Pisum sativum epicotyls contain multiple beta-1,4-glucan (cellulose) synthetase activities (UDP- or GDP-glucose: beta-1,4-glucan-glucosyl transferase), and the levels of some of these are influenced by treatments with the growth hormone, indoleacetic acid (IAA) [9].

Chemical compound and disease context of Peas


Biological context of Peas


Anatomical context of Peas


Associations of Peas with chemical compounds


Gene context of Peas


Analytical, diagnostic and therapeutic context of Peas


  1. Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. Dickson, R., Weiss, C., Howard, R.J., Alldrick, S.P., Ellis, R.J., Lorimer, G., Azem, A., Viitanen, P.V. J. Biol. Chem. (2000) [Pubmed]
  2. Immunolocalization of a cysteine protease in vacuoles, vesicles, and symbiosomes of pea nodule cells. Vincent, J.L., Brewin, N.J. Plant Physiol. (2000) [Pubmed]
  3. Purification and partial characterization of a glycoprotein from pea (Pisum sativum) with receptor activity for rhicadhesin, an attachment protein of Rhizobiaceae. Swart, S., Logman, T.J., Smit, G., Lugtenberg, B.J., Kijne, J.W. Plant Mol. Biol. (1994) [Pubmed]
  4. Pea lectin is correctly processed, stable and active in leaves of transgenic potato plants. Edwards, G.A., Hepher, A., Clerk, S.P., Boulter, D. Plant Mol. Biol. (1991) [Pubmed]
  5. Cyanide as a copper and quinone-directed inhibitor of amine oxidases from pea seedlings ( Pisum sativum) and Arthrobacter globiformis: evidence for both copper coordination and cyanohydrin derivatization of the quinone cofactor. Shepard, E.M., Juda, G.A., Ling, K.Q., Sayre, L.M., Dooley, D.M. J. Biol. Inorg. Chem. (2004) [Pubmed]
  6. Dark-induced and organ-specific expression of two asparagine synthetase genes in Pisum sativum. Tsai, F.Y., Coruzzi, G.M. EMBO J. (1990) [Pubmed]
  7. The transit peptide of a chloroplast thylakoid membrane protein is functionally equivalent to a stromal-targeting sequence. Hand, J.M., Szabo, L.J., Vasconcelos, A.C., Cashmore, A.R. EMBO J. (1989) [Pubmed]
  8. Monoclonal antibodies to the light-harvesting chlorophyll a/b protein complex of photosystem II. Darr, S.C., Somerville, S.C., Arntzen, C.J. J. Cell Biol. (1986) [Pubmed]
  9. The site of cellulose synthesis. Hormone treatment alters the intracellular location of alkali-insoluble beta-1,4-glucan (cellulose) synthetase activities. Shore, G., Maclachlan, G.A. J. Cell Biol. (1975) [Pubmed]
  10. Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Schloter, M., Wiehe, W., Assmus, B., Steindl, H., Becke, H., Höflich, G., Hartmann, A. Appl. Environ. Microbiol. (1997) [Pubmed]
  11. Identification of a novel triterpenoid saponin from Pisum sativum as a specific inhibitor of the diguanylate cyclase of Acetobacter xylinum. Ohana, P., Delmer, D.P., Carlson, R.W., Glushka, J., Azadi, P., Bacic, T., Benziman, M. Plant Cell Physiol. (1998) [Pubmed]
  12. Staphylococcal protein A as a fusion partner directs secretion of the e1alpha and e1beta subunits of pea mitochondrial pyruvate dehydrogenase by Bacillus subtilis. Moreno, J.I., Miernyk, J.A., Randall, D.D. Protein Expr. Purif. (2000) [Pubmed]
  13. Effect of NH4+ on nitrogenase activity in nodule breis and bacteroides from Pisum sativum L. Salminen, S.O. Biochim. Biophys. Acta (1981) [Pubmed]
  14. Cloning and characterization of a cDNA encoding the chloroplastic copper/zinc-superoxide dismutase from pea. Scioli, J.R., Zilinskas, B.A. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  15. A homolog of Escherichia coli RecA protein in plastids of higher plants. Cerutti, H., Osman, M., Grandoni, P., Jagendorf, A.T. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  16. In the higher plant Pisum sativum maturation of nascent DNA is blocked by cycloheximide, but only after 4-8 replicons are joined. Schvartzman, J.B., Van't Hof, J. Nucleic Acids Res. (1982) [Pubmed]
  17. Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Ferguson, B.J., Ross, J.J., Reid, J.B. Plant Physiol. (2005) [Pubmed]
  18. Light differentially regulates cell division and the mRNA abundance of pea nucleolin during de-etiolation. Reichler, S.A., Balk, J., Brown, M.E., Woodruff, K., Clark, G.B., Roux, S.J. Plant Physiol. (2001) [Pubmed]
  19. Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Yuan, M., Shaw, P.J., Warn, R.M., Lloyd, C.W. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  20. Transport of proteins into chloroplasts. Partial purification of a thylakoidal processing peptidase involved in plastocyanin biogenesis. Kirwin, P.M., Elderfield, P.D., Robinson, C. J. Biol. Chem. (1987) [Pubmed]
  21. Purification and characterization of a xyloglucan oligosaccharide-specific xylosidase from pea seedlings. O'Neill, R.A., Albersheim, P., Darvill, A.G. J. Biol. Chem. (1989) [Pubmed]
  22. Subcellular localization of hexokinase in pea leaves. Evidence for the predominance of a mitochondrially bound form. Cosio, E., Bustamante, E. J. Biol. Chem. (1984) [Pubmed]
  23. A molecular-genetic study of the Arabidopsis Toc75 gene family. Baldwin, A., Wardle, A., Patel, R., Dudley, P., Park, S.K., Twell, D., Inoue, K., Jarvis, P. Plant Physiol. (2005) [Pubmed]
  24. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Dhugga, K.S., Tiwari, S.C., Ray, P.M. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  25. Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum. Cheesbrough, T.M., Kolattukudy, P.E. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  26. X-ray structure determination at 2.6-A resolution of a lipoate-containing protein: the H-protein of the glycine decarboxylase complex from pea leaves. Pares, S., Cohen-Addad, C., Sieker, L., Neuburger, M., Douce, R. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  27. Requirement for either a host- or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca. Rogers, L.M., Kim, Y.K., Guo, W., González-Candelas, L., Li, D., Kolattukudy, P.E. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  28. Localization of small heat shock proteins to the higher plant endomembrane system. Helm, K.W., LaFayette, P.R., Nagao, R.T., Key, J.L., Vierling, E. Mol. Cell. Biol. (1993) [Pubmed]
  29. Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis. Lutziger, I., Oliver, D.J. Plant Physiol. (2001) [Pubmed]
  30. Brassicaceae express multiple isoforms of biotin carboxyl carrier protein in a tissue-specific manner. Thelen, J.J., Mekhedov, S., Ohlrogge, J.B. Plant Physiol. (2001) [Pubmed]
  31. The cryptochrome gene family in pea includes two differentially expressed CRY2 genes. Platten, J.D., Foo, E., Foucher, F., Hecht, V., Reid, J.B., Weller, J.L. Plant Mol. Biol. (2005) [Pubmed]
  32. The Pisum sativum MAP kinase homologue (PsMAPK) rescues the Saccharomyces cerevisiae hog1 deletion mutant under conditions of high osmotic stress. Pöpping, B., Gibbons, T., Watson, M.D. Plant Mol. Biol. (1996) [Pubmed]
  33. The hydrogenase gene cluster of Rhizobium leguminosarum bv. viciae contains an additional gene (hypX), which encodes a protein with sequence similarity to the N10-formyltetrahydrofolate-dependent enzyme family and is required for nickel-dependent hydrogenase processing and activity. Rey, L., Fernández, D., Brito, B., Hernando, Y., Palacios, J.M., Imperial, J., Ruiz-Argüeso, T. Mol. Gen. Genet. (1996) [Pubmed]
  34. Molecular cloning and characterization of the pyrB1 and pyrB2 genes encoding aspartate transcarbamoylase in pea (Pisum sativum L.). Williamson, C.L., Slocum, R.D. Plant Physiol. (1994) [Pubmed]
  35. Ferrous ion transport across chloroplast inner envelope membranes. Shingles, R., North, M., McCarty, R.E. Plant Physiol. (2002) [Pubmed]
  36. The effects of different thymidine concentrations on DNA replication in pea-root cells synchronized by a protracted 5-fluorodeoxyuridine treatment. Schvartzman, J.B., Krimer, D.B., Van't Hof, J. Exp. Cell Res. (1984) [Pubmed]
  37. Purification and characterization of N-acetylglutamate 5-phosphotransferase from pea (Pisum sativum) cotyledons. McKay, G., Shargool, P.D. Biochem. J. (1981) [Pubmed]
  38. Xyloglucan glucosyltransferase in Golgi membranes from Pisum sativum (pea). White, A.R., Xin, Y., Pezeshk, V. Biochem. J. (1993) [Pubmed]
WikiGenes - Universities