The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

fgf1  -  fibroblast growth factor 1 (acidic)

Xenopus laevis

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on MGC84348


Biological context of MGC84348

  • Blocking the activin signal transduction pathway also reveals autonomous induction of a neural marker and unmasks a relationship between activin and fibroblast growth factor [5].
  • Following recent reports implicating transforming growth factor-beta 2-like and fibroblast growth factor-like factors in mesoderm induction, this indicates that a different type of signal molecule (working through a nuclear receptor, not a plasma membrane receptor) might mediate inductive cell interactions during early embryonic development [6].
  • Collectively, these results show that the cytoplasmic domain of XLerk has a signaling function that is important for cell adhesion, and fibroblast growth factor signaling modulates this function [7].
  • To evaluate the role of MAPK in posterior regionalization, ectodermal isolates were treated with increasing concentrations of FGF and assayed for MAPK activity and neurectoderm-specific gene expression [8].
  • In addition, we identified a region in the cytoplasmic tail of ephrin B1 that is critical for interaction with the FGF receptor; we also report FGF-induced phosphorylation of ephrins in a neural tissue [9].

Anatomical context of MGC84348


Associations of MGC84348 with chemical compounds


Regulatory relationships of MGC84348

  • Ectopic Xbra can induce Xegr-1 transcription by an indirect mechanism that appears to operate via primary activation of fibroblast growth factor secretion [17].

Other interactions of MGC84348


Analytical, diagnostic and therapeutic context of MGC84348

  • We have utilized the polymerase chain reaction (PCR)-based differential display methodology (Liang, P., and Pardee, A. B. (1992) Science 257, 967-969) to identify a novel transcript whose expression levels increased in Xenopus embryo explants during mesoderm induction by fibroblast growth factor [22].
  • In co-immunoprecipitation assays, this receptor is capable of forming homomeric complexes and can interact with fibroblast growth factor (FGF) receptor 1 [23].
  • The interaction with the synaptic target, such as a muscle cell or a latex bead coated with basic fibroblast growth factor, results in the localization and immobilization of SV packets at the contact site [24].
  • We have analyzed the expression pattern of bFGF (FGF-2) mRNA and protein in early Xenopus development using RNAse protections, in situ hybridization and immunocytochemical methods [25].
  • In this study, we first show that Laloo expression can mimic FGF function in a distinct context, suggesting that the Src-related kinases are general transducers of FGF signaling during development [26].


  1. Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. MacNicol, A.M., Muslin, A.J., Williams, L.T. Cell (1993) [Pubmed]
  2. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Amaya, E., Musci, T.J., Kirschner, M.W. Cell (1991) [Pubmed]
  3. An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes. Kimelman, D., Kirschner, M.W. Cell (1989) [Pubmed]
  4. Mesoderm induction in Xenopus caused by activation of MAP kinase. Umbhauer, M., Marshall, C.J., Mason, C.S., Old, R.W., Smith, J.C. Nature (1995) [Pubmed]
  5. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Hemmati-Brivanlou, A., Melton, D.A. Nature (1992) [Pubmed]
  6. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Durston, A.J., Timmermans, J.P., Hage, W.J., Hendriks, H.F., de Vries, N.J., Heideveld, M., Nieuwkoop, P.D. Nature (1989) [Pubmed]
  7. Loss of cell adhesion in Xenopus laevis embryos mediated by the cytoplasmic domain of XLerk, an erythropoietin-producing hepatocellular ligand. Jones, T.L., Chong, L.D., Kim, J., Xu, R.H., Kung, H.F., Daar, I.O. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  8. Mitogen-activated protein kinase and neural specification in Xenopus. Uzgare, A.R., Uzman, J.A., El-Hodiri, H.M., Sater, A.K. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  9. Fibroblast growth factor receptor-mediated rescue of x-ephrin B1-induced cell dissociation in Xenopus embryos. Chong, L.D., Park, E.K., Latimer, E., Friesel, R., Daar, I.O. Mol. Cell. Biol. (2000) [Pubmed]
  10. Involvement of p21ras in Xenopus mesoderm induction. Whitman, M., Melton, D.A. Nature (1992) [Pubmed]
  11. Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Smith, W.C., Knecht, A.K., Wu, M., Harland, R.M. Nature (1993) [Pubmed]
  12. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates. Snir, M., Ofir, R., Elias, S., Frank, D. EMBO J. (2006) [Pubmed]
  13. Regulation of the fibroblast growth factor receptor in early Xenopus embryos. Musci, T.J., Amaya, E., Kirschner, M.W. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  14. QSulf1, a heparan sulfate 6-O-endosulfatase, inhibits fibroblast growth factor signaling in mesoderm induction and angiogenesis. Wang, S., Ai, X., Freeman, S.D., Pownall, M.E., Lu, Q., Kessler, D.S., Emerson, C.P. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  15. Dorsoventral patterning of the Xenopus eye: a collaboration of Retinoid, Hedgehog and FGF receptor signaling. Lupo, G., Liu, Y., Qiu, R., Chandraratna, R.A., Barsacchi, G., He, R.Q., Harris, W.A. Development (2005) [Pubmed]
  16. Inductive effects of fibroblast growth factor and lithium ion on Xenopus blastula ectoderm. Slack, J.M., Isaacs, H.V., Darlington, B.G. Development (1988) [Pubmed]
  17. The Spemann organizer-expressed zinc finger gene Xegr-1 responds to the MAP kinase/Ets-SRF signal transduction pathway. Panitz, F., Krain, B., Hollemann, T., Nordheim, A., Pieler, T. EMBO J. (1998) [Pubmed]
  18. Swift is a novel BRCT domain coactivator of Smad2 in transforming growth factor beta signaling. Shimizu, K., Bourillot, P.Y., Nielsen, S.J., Zorn, A.M., Gurdon, J.B. Mol. Cell. Biol. (2001) [Pubmed]
  19. XMeis3 protein activity is required for proper hindbrain patterning in Xenopus laevis embryos. Dibner, C., Elias, S., Frank, D. Development (2001) [Pubmed]
  20. Differential role of 14-3-3 family members in Xenopus development. Lau, J.M., Wu, C., Muslin, A.J. Dev. Dyn. (2006) [Pubmed]
  21. Ledgerline, a Novel Xenopus laevis Gene, Regulates Differentiation of Presomitic Mesoderm During Somitogenesis. Chan, T., Satow, R., Kitagawa, H., Kato, S., Asashima, M. Zool. Sci. (2006) [Pubmed]
  22. cDNA cloning of a novel, developmentally regulated immediate early gene activated by fibroblast growth factor and encoding a nuclear protein. Paterno, G.D., Li, Y., Luchman, H.A., Ryan, P.J., Gillespie, L.L. J. Biol. Chem. (1997) [Pubmed]
  23. A novel interleukin-17 receptor-like protein identified in human umbilical vein endothelial cells antagonizes basic fibroblast growth factor-induced signaling. Yang, R.B., Ng, C.K., Wasserman, S.M., Kömüves, L.G., Gerritsen, M.E., Topper, J.N. J. Biol. Chem. (2003) [Pubmed]
  24. Dynamics of synaptic vesicles in cultured spinal cord neurons in relationship to synaptogenesis. Dai, Z., Peng, H.B. Mol. Cell. Neurosci. (1996) [Pubmed]
  25. Spatial and temporal expression of basic fibroblast growth factor (FGF-2) mRNA and protein in early Xenopus development. Song, J., Slack, J.M. Mech. Dev. (1994) [Pubmed]
  26. Src family kinase function during early Xenopus development. Weinstein, D.C., Hemmati-Brivanlou, A.A. Dev. Dyn. (2001) [Pubmed]
WikiGenes - Universities