The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

amiE  -  acylamide amidohydrolase

Pseudomonas aeruginosa PAO1

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of amiE

 

High impact information on amiE

 

Chemical compound and disease context of amiE

 

Biological context of amiE

  • The evidence from the amino acid studies is in complete agreement with that deduced from the DNA sequence of the amiE gene [14].
  • Northern (RNA) analysis results show that in cells grown under inducing conditions, a major 1.3-kb amiE transcript arises from pE, and in addition, a larger transcript of approximately 5.0 kb in length has been shown to derive from the same promoter, encoding all of the genes of the operon [15].
  • These R' plasmids were used to determine the map location of the amiE locus and to identify tentatively a number of P. putida auxotrophic mutations [16].
  • Restriction enzyme sites were matched to the N-terminal amino acid sequence of amidase to obtain alignment of the amiE gene within the cloned fragment [17].
  • The amidase regulator gene, amiR, was found to lie about 2 kbp downstream from the structural gene, amiE [18].
 

Associations of amiE with chemical compounds

 

Analytical, diagnostic and therapeutic context of amiE

References

  1. The nucleotide sequence of the amiE gene of Pseudomonas aeruginosa. Brammar, W.J., Charles, I.G., Matfield, M., Liu, C.P., Drew, R.E., Clarke, P.H. FEBS Lett. (1987) [Pubmed]
  2. Cloning and primary structure of the wide-spectrum amidase from Brevibacterium sp. R312: high homology to the amiE product from Pseudomonas aeruginosa. Soubrier, F., Lévy-Schil, S., Mayaux, J.F., Pétré, D., Arnaud, A., Crouzet, J. Gene (1992) [Pubmed]
  3. Complementation analysis of the aliphatic amidase genes of Pseudomonas aeruginosa. Drew, R. J. Gen. Microbiol. (1984) [Pubmed]
  4. Crystal structure and induction mechanism of AmiC-AmiR: a ligand-regulated transcription antitermination complex. O'Hara, B.P., Norman, R.A., Wan, P.T., Roe, S.M., Barrett, T.E., Drew, R.E., Pearl, L.H. EMBO J. (1999) [Pubmed]
  5. Chloroacetone as an active-site-directed inhibitor of the aliphatic amidase from Pseudomonas aeruginosa. Hollaway, M.R., Clarke, P.H., Ticho, T. Biochem. J. (1980) [Pubmed]
  6. Pseudomonas aeruginosa aliphatic amidase is related to the nitrilase/cyanide hydratase enzyme family and Cys166 is predicted to be the active site nucleophile of the catalytic mechanism. Novo, C., Tata, R., Clemente, A., Brown, P.R. FEBS Lett. (1995) [Pubmed]
  7. Identification and structure of the nasR gene encoding a nitrate- and nitrite-responsive positive regulator of nasFEDCBA (nitrate assimilation) operon expression in Klebsiella pneumoniae M5al. Goldman, B.S., Lin, J.T., Stewart, V. J. Bacteriol. (1994) [Pubmed]
  8. Cloning and DNA sequence of amiC, a new gene regulating expression of the Pseudomonas aeruginosa aliphatic amidase, and purification of the amiC product. Wilson, S., Drew, R. J. Bacteriol. (1991) [Pubmed]
  9. Isolation and phenotypic characterization of Pseudomonas aeruginosa pseudorevertants containing suppressors of the catabolite repression control-defective crc-10 allele. Collier, D.N., Spence, C., Cox, M.J., Phibbs, P.V. FEMS Microbiol. Lett. (2001) [Pubmed]
  10. Inhibition of the aliphatic amidase from Pseudomonas aeruginosa by urea and related compounds. Gregoriou, M., Brown, P.R. Eur. J. Biochem. (1979) [Pubmed]
  11. Kinetic mechanism of the aliphatic amidase from Pseudomonas aeruginosa. Woods, M.J., Findlater, J.D., Orsi, B.A. Biochim. Biophys. Acta (1979) [Pubmed]
  12. Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. Smyth, P.F., Clarke, P.H. J. Gen. Microbiol. (1975) [Pubmed]
  13. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Tam, R., Saier, M.H. Microbiol. Rev. (1993) [Pubmed]
  14. The amino acid sequence of the aliphatic amidase from Pseudomonas aeruginosa. Ambler, R.P., Auffret, A.D., Clarke, P.H. FEBS Lett. (1987) [Pubmed]
  15. Transcriptional analysis of the amidase operon from Pseudomonas aeruginosa. Wilson, S.A., Drew, R.E. J. Bacteriol. (1995) [Pubmed]
  16. Isolation and characterization of Pseudomonas aeruginosa R' plasmids constructed by interspecific mating. Morgan, A.F. J. Bacteriol. (1982) [Pubmed]
  17. Alignment of cloned amiE gene of Pseudomonas aeruginosa with the N-terminal sequence of amidase. Clarke, P.H., Drew, R.E., Turberville, C., Brammar, W.J., Ambler, R.P., Auffret, A.D. Biosci. Rep. (1981) [Pubmed]
  18. The amidase regulatory gene (amiR) of Pseudomonas aeruginosa. Cousens, D.J., Clarke, P.H., Drew, R. J. Gen. Microbiol. (1987) [Pubmed]
  19. Substitutions of Thr-103-Ile and Trp-138-Gly in amidase from Pseudomonas aeruginosa are responsible for altered kinetic properties and enzyme instability. Karmali, A., Pacheco, R., Tata, R., Brown, P. Mol. Biotechnol. (2001) [Pubmed]
  20. A competition time-course method for following enzymic reactions applied to the hydrolysis of acetamide catalysed by an aliphatic amidase. Hollaway, M.R., Ticho, T. FEBS Lett. (1979) [Pubmed]
  21. N-terminal amino acid sequence of Brevibacterium sp. R312 wide-spectrum amidase. Chion, C.K., Duran, R., Arnaud, A., Galzy, P. Appl. Microbiol. Biotechnol. (1991) [Pubmed]
 
WikiGenes - Universities