The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Brevibacterium

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Brevibacterium

 

High impact information on Brevibacterium

 

Chemical compound and disease context of Brevibacterium

  • Glutamic acid producer Brevibacterium lactofermentum intact cells were used to demonstrate the feasibility of in vivo 15N NMR to follow nitrogen assimilation and amino acid production throughout the growth cycle [11].
  • A protocatechuate 3,4-dioxygenase with exceptionally sharp spectral features and a new subunit composition has been purified and crystallized from the Gram-positive organism Brevibacterium fuscum [12].
  • Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes [13].
  • Mechanism of the adenylate cyclase reaction. Stereochemistry of the reaction catalyzed by the enzyme from Brevibacterium liquefaciens [14].
  • Adenylate cyclase from Brevibacterium liquefaciens (ATCC 14929) catalyzes the formation of the RP-diastereomer of adenosine 3':5'-cyclic monophosphorothioate from the SP-diastereomer of adenosine-5'-(1-thiotriphosphate) [14].
 

Biological context of Brevibacterium

 

Anatomical context of Brevibacterium

 

Gene context of Brevibacterium

 

Analytical, diagnostic and therapeutic context of Brevibacterium

References

  1. Cloning and structure of the BepI modification methylase. Kupper, D., Zhou, J.G., Venetianer, P., Kiss, A. Nucleic Acids Res. (1989) [Pubmed]
  2. Resonance Raman spectroscopy of nitrile hydratase, a novel iron-sulfur enzyme. Brennan, B.A., Cummings, J.G., Chase, D.B., Turner, I.M., Nelson, M.J. Biochemistry (1996) [Pubmed]
  3. Cholesterol heterogeneity in the plasma membrane of epithelial cells. el Yandouzi, E.H., Le Grimellec, C. Biochemistry (1992) [Pubmed]
  4. Production of arginine by fermentation. Utagawa, T. J. Nutr. (2004) [Pubmed]
  5. Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. Navas, J., González-Zorn, B., Ladrón, N., Garrido, P., Vázquez-Boland, J.A. J. Bacteriol. (2001) [Pubmed]
  6. Arogenate (pretyrosine) is an obligatory intermediate of L-tyrosine biosynthesis: confirmation in a microbial mutant. Fazel, A.M., Bowen, J.R., Jensen, R.A. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  7. Fatty acid synthetase from Brevibacterium ammoniagenes: formation of monounsaturated fatty acids by a multienzyme complex. Kawaguchi, A., Okuda, S. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  8. Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin. Caldinelli, L., Iametti, S., Barbiroli, A., Bonomi, F., Fessas, D., Molla, G., Pilone, M.S., Pollegioni, L. J. Biol. Chem. (2005) [Pubmed]
  9. Cholesterol oxidase from Brevibacterium sterolicum. The relationship between covalent flavinylation and redox properties. Motteran, L., Pilone, M.S., Molla, G., Ghisla, S., Pollegioni, L. J. Biol. Chem. (2001) [Pubmed]
  10. Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum. A dioxygenase with catalase activity. Miller, M.A., Lipscomb, J.D. J. Biol. Chem. (1996) [Pubmed]
  11. In vivo 15N NMR studies of regulation of nitrogen assimilation and amino acid production by Brevibacterium lactofermentum. Haran, N., Kahana, Z.E., Lapidot, A. J. Biol. Chem. (1983) [Pubmed]
  12. Brevibacterium fuscum protocatechuate 3,4-dioxygenase. Purification, crystallization, and characterization. Whittaker, J.W., Lipscomb, J.D., Kent, T.A., Münck, E. J. Biol. Chem. (1984) [Pubmed]
  13. Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes. Manstein, D.J., Pai, E.F. J. Biol. Chem. (1986) [Pubmed]
  14. Mechanism of the adenylate cyclase reaction. Stereochemistry of the reaction catalyzed by the enzyme from Brevibacterium liquefaciens. Gerlt, J.A., Coderre, J.A., Wolin, M.S. J. Biol. Chem. (1980) [Pubmed]
  15. Transition state analogs for protocatechuate 3,4-dioxygenase. Spectroscopic and kinetic studies of the binding reactions of ketonized substrate analogs. Whittaker, J.W., Lipscomb, J.D. J. Biol. Chem. (1984) [Pubmed]
  16. Nucleotide sequence of the homoserine kinase (thr B) gene of Brevibacterium lactofermentum. Mateos, L.M., del Real, G., Aguilar, A., Martín, J.F. Nucleic Acids Res. (1987) [Pubmed]
  17. An EXAFS study of the interaction of substrate with the ferric active site of protocatechuate 3,4-dioxygenase. True, A.E., Orville, A.M., Pearce, L.L., Lipscomb, J.D., Que, L. Biochemistry (1990) [Pubmed]
  18. Protoplast transformation of glutamate-producing bacteria with plasmid DNA. Katsumata, R., Ozaki, A., Oka, T., Furuya, A. J. Bacteriol. (1984) [Pubmed]
  19. Molecular cloning and transcriptional analysis of a guanosine kinase gene of Brevibacterium acetylicum ATCC 953. Usuda, Y., Kawasaki, H., Shimaoka, M., Utagawa, T. J. Bacteriol. (1997) [Pubmed]
  20. Structural studies of a mannitol teichoic acid from the cell wall of bacterium N.C.T.C. 9742. Anderton, W.J., Wilkinson, S.G. Biochem. J. (1985) [Pubmed]
  21. Cholesterol distribution in renal epithelial cells LLC-PK1 as determined by cholesterol oxidase: evidence that glutaraldehyde fixation masks plasma membrane cholesterol pools. el Yandouzi, E.H., Zlatkine, P., Moll, G., Le Grimellec, C. Biochemistry (1994) [Pubmed]
  22. Determination of total cholesterol in serum by cholesterol esterase and cholesterol oxidase immobilized and co-immobilized on to arylamine glass. Malik, V., Pundir, C.S. Biotechnol. Appl. Biochem. (2002) [Pubmed]
  23. Enhanced glutamic acid production of Brevibacterium sp. with temperature shift-up cultivation. Choi, S.U., Nihira, T., Yoshida, T. J. Biosci. Bioeng. (2004) [Pubmed]
  24. Genetic transfers in Brevibacterium sp. Rytír, V., Sroglová, A., Holubová, I., Konícková-Radochová, M., Konícek, J. Folia Microbiol. (Praha) (1986) [Pubmed]
  25. A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum: regulation of argS-lysA cluster expression by arginine. Oguiza, J.A., Malumbres, M., Eriani, G., Pisabarro, A., Mateos, L.M., Martin, F., Martín, J.F. J. Bacteriol. (1993) [Pubmed]
  26. Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum. Honrubia, M.P., Fernández, F.J., Gil, J.A. Mol. Gen. Genet. (1998) [Pubmed]
  27. Cloning and expression in Escherichia coli of the homoserine kinase (thrB) gene from Brevibacterium lactofermentum. Mateos, L.M., del Real, G., Aguilar, A., Martín, J.F. Mol. Gen. Genet. (1987) [Pubmed]
  28. Propionicin SM1, a bacteriocin from Propionibacterium jensenii DF1: isolation and characterization of the protein and its gene. Miescher, S., Stierli, M.P., Teuber, M., Meile, L. Syst. Appl. Microbiol. (2000) [Pubmed]
  29. The Brevibacterium albidum gene encoding the arginine tRNACCG complements the growth defect of an Escherichia coli strain carrying a thermosensitive mutation in the rnpA gene at the nonpermissive temperature. Kim, M.S., Kim, S., Kim, S.C., Lee, Y.M., Jeon, E.S., Park, C.U., Lee, Y. Mol. Gen. Genet. (1997) [Pubmed]
  30. Cloning and sequence determination of the aspartase-encoding gene from Brevibacterium flavum MJ233. Asai, Y., Inui, M., Vertès, A., Kobayashi, M., Yukawa, H. Gene (1995) [Pubmed]
  31. Simultaneous identification of two cyclohexanone oxidation genes from an environmental Brevibacterium isolate using mRNA differential display. Brzostowicz, P.C., Gibson, K.L., Thomas, S.M., Blasko, M.S., Rouvière, P.E. J. Bacteriol. (2000) [Pubmed]
  32. Site-directed mutagenesis of the aspartokinase gene lysC and its characterization in Brevibacterium flavum. Lu, J.H., Liao, C.C. Lett. Appl. Microbiol. (1997) [Pubmed]
 
WikiGenes - Universities