The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Spores, Bacterial

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Spores, Bacterial

 

High impact information on Spores, Bacterial

 

Biological context of Spores, Bacterial

 

Anatomical context of Spores, Bacterial

 

Associations of Spores, Bacterial with chemical compounds

 

Gene context of Spores, Bacterial

  • Levels of bacterial spores per square meter on the VLC-1 and VLC-2 were 1.6 x 10(2) and 9.7 x 10(1), respectively, prior to dry-heat sterilization [16].
  • Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars [17].
  • A method has been devised to differentiate viable and nonviable bacterial spores. "Germination-like" changes are initiated in spores with performic acid and lysozyme [18].
 

Analytical, diagnostic and therapeutic context of Spores, Bacterial

References

  1. Characterization of Bacillus probiotics available for human use. Duc, l.e. .H., Hong, H.A., Barbosa, T.M., Henriques, A.O., Cutting, S.M. Appl. Environ. Microbiol. (2004) [Pubmed]
  2. Cooperative manganese (II) activation of 3-phosphoglycerate mutase of Bacillus megaterium: a biological pH-sensing mechanism in bacterial spore formation and germination. Kuhn, N.J., Setlow, B., Setlow, P., Cammack, R., Williams, R. Arch. Biochem. Biophys. (1995) [Pubmed]
  3. Radiobiological results of the Biostack experiment on board Apollo 16 and 17. Graul, E.H., Ruther, W., Heinrich, W., Allkofer, O.C., Kaiser, R., Pfohl, R., Schopper, E., Henig, G., Schott, J.U., Bucker, H. Life sciences and space research. (1975) [Pubmed]
  4. The use of bacterial spore formers as probiotics. Hong, H.A., Duc, l.e. .H., Cutting, S.M. FEMS Microbiol. Rev. (2005) [Pubmed]
  5. Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Chan, J.W., Esposito, A.P., Talley, C.E., Hollars, C.W., Lane, S.M., Huser, T. Anal. Chem. (2004) [Pubmed]
  6. Commitment of bacterial spores to germinate. A measure of the trigger reaction. Stewart, G.S., Johnstone, K., Hagelberg, E., Ellar, D.J. Biochem. J. (1981) [Pubmed]
  7. Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release. Kort, R., O'Brien, A.C., van Stokkum, I.H., Oomes, S.J., Crielaard, W., Hellingwerf, K.J., Brul, S. Appl. Environ. Microbiol. (2005) [Pubmed]
  8. Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment. Watanabe, T., Furukawa, S., Hirata, J., Koyama, T., Ogihara, H., Yamasaki, M. Appl. Environ. Microbiol. (2003) [Pubmed]
  9. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species. Hauser, P.M., Karamata, D. Biochimie (1992) [Pubmed]
  10. Chlorine dioxide inactivation of Cryptosporidium parvum oocysts and bacterial spore indicators. Chauret, C.P., Radziminski, C.Z., Lepuil, M., Creason, R., Andrews, R.C. Appl. Environ. Microbiol. (2001) [Pubmed]
  11. Rapid determination of dipicolinic acid in the spores of Clostridium species by gas-liquid chromatography. Tabor, M.W., MacGee, J., Holland, J.W. Appl. Environ. Microbiol. (1976) [Pubmed]
  12. Surface-decontaminating action of glutaraldehyde in the gas-aerosol phase. Bovallius, A., Anäs, P. Appl. Environ. Microbiol. (1977) [Pubmed]
  13. Spore photoproduct (SP) lyase from Bacillus subtilis specifically binds to and cleaves SP (5-thyminyl-5,6-dihydrothymine) but not cyclobutane pyrimidine dimers in UV-irradiated DNA. Slieman, T.A., Rebeil, R., Nicholson, W.L. J. Bacteriol. (2000) [Pubmed]
  14. Chemical germination of native and cation-exchanged bacterial spores with trifluoperazine. Sacks, L.E. Appl. Environ. Microbiol. (1990) [Pubmed]
  15. Cortex content of asporogenous mutants of Bacillus subtilis. Imae, Y., Strominger, J.L. J. Bacteriol. (1976) [Pubmed]
  16. Microbiological profiles of the Viking spacecraft. Puleo, J.R., Fields, N.D., Bergstrom, S.L., Oxborrow, G.S., Stabekis, P.D., Koukol, R. Appl. Environ. Microbiol. (1977) [Pubmed]
  17. Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Kminek, G., Bada, J.L., Pogliano, K., Ward, J.F. Radiat. Res. (2003) [Pubmed]
  18. Rapid identification of viable bacterial spores using a fluorescence method. Sharma, D.K., Prasad, D.N. Biotechnic & histochemistry : official publication of the Biological Stain Commission. (1992) [Pubmed]
  19. Glutaraldehyde: its uptake by sporing and non-sporing bacteria, rubber, plastic and an endoscope. Power, E.G., Russell, A.D. J. Appl. Bacteriol. (1989) [Pubmed]
 
WikiGenes - Universities