The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies.

Calcium oxalate (CaOx), calcium phosphate (CaP), and uric acid or urate are the most common crystals seen in the kidneys. Most of the crystals evoke an inflammatory response leading to fibrosis, loss of nephrons, and eventually to chronic renal failure. Of the three, CaOx monohydrate is the most reactive, whereas some forms of CaP do not evoke any discernible response. Reactive oxygen species are produced during the interactions between the crystals and renal cells and are responsible for the various cellular responses. CaOx crystals generally form in the renal tubules. Exposure of renal epithelial cells to CaOx crystals results in the increased synthesis of osteopontin, bikunin, heparan sulfate, monocyte chemoattractant protein 1 (MCP-1), and prostaglandin (PG) E2, which are known to participate in inflammatory processes and in extracellular matrix production. CaOx crystal deposition in rat kidneys also activates the renin-angiotensin system. Both Ox and CaOx crystals selectively activate p38 mitogen- activated protein kinase ( MAPK) in exposed tubular cells. CaP crystals can form in the tubular lumen, tubular cells, or tubular basement membrane. Renal epithelial cells exposed to brushite crystals produce MCP-1. Basic CaP and calcium pyrophosphate dihydrate induce mitogenesis in fibroblasts, stimulate production of PGE2, and up-regulate the synthesis of metalloproteinases (MMP) while down-regulating the production of inhibitors of MMPs through activation of p42/44 MAPK. Deposition of urate crystals in the kidneys becomes associated with renal tubular atrophy, interstitial fibrosis, and development of inflammatory infiltrate. Renal epithelial cells exposed to uric acid crystals synthesize MCP-1 as well as PGE2. Monocytes or neutrophils exposed to urate crystals produce tumor necrosis factor alpha, interleukin-1 ( IL-1), IL-6, and IL-8. Expression of IL-8 is mediated through extracellular signal-regulated kinase 1 (ERK-1)/ERK-2 and nuclear transcription factors activated protein 1 and nuclear factor kappabeta. Urate crystals also stimulate the macrophages to produce MMPs.[1]


WikiGenes - Universities