The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEMBL92636     1H-indole-5,6-diol

Synonyms: SureCN48994, AG-F-04120, CHEBI:27404, HMDB04058, ANW-44822, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of 3H-INDOLE-5,6-DIOL

 

High impact information on 3H-INDOLE-5,6-DIOL

  • This study describes the identification of Drosophila yellow-f and yellow-f2 as dopachrome-conversion enzymes responsible for catalysing the conversion of dopachrome into 5,6-dihydroxyindole in the melanization pathway [5].
  • Because melanogenic intermediates, such as 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid, are compartmentalized within membraneous structures, the preferential localization of COMT in cytosol and cytosolic membrane network might be advantageous for a detoxification role in (melanotic) melanocytes that produce dihydroxyindoles [6].
  • The presence of O-methylated derivatives of 5,6-dihydroxyindole (5,6DHI) and 5,6-dihydroxyindole-2-carboxylic acid (5,6DHI2C) in medium of melanoma cell cultures gives evidence of intracellular O-methylating ability [7].
  • We have found substantial amounts (6.6-143 and 0.5-13 micrograms/mg. protein, respectively) of 5,6-dihydroxyindole (5,6-DHI) and 5,6-dihydroxyindole-2-carboxylic acid (5,6-DHI2C), which are key intermediate monomers for the formation of the eumelanin polymer, within coated vesicle fraction of pigment cells [8].
  • This enzyme, prepared from mouse melanoma, catalyzed the conversion of dopachrome to 5,6-dihydroxyindole and also appeared to block the pigment pathway at this latter compound in the absence of tyrosinase [9].
 

Chemical compound and disease context of 3H-INDOLE-5,6-DIOL

 

Biological context of 3H-INDOLE-5,6-DIOL

 

Anatomical context of 3H-INDOLE-5,6-DIOL

 

Associations of 3H-INDOLE-5,6-DIOL with other chemical compounds

  • The Fe(III)-coordination chemistry of neuromelanin building-block compounds, 5,6-dihydroxyindole (DHI), 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and 5,6-dihydroxy-N-methyl-indole (Me-DHI), and the neurotransmitter dopamine were explored in aqueous solution by anaerobic pH-dependent spectrophotometric titrations [18].
  • A pulse radiolytic investigation has been conducted to establish whether a redox reaction takes place between dopaquinone and 5,6-dihydroxyindole (DHI) and its 2-carboxylic acid (DHICA) and to measure the rate constants of the interactions [19].
  • MIF has unexpectedly been found to convert D-dopachrome, an enantiomer of naturally occurring L-dopachrome, to 5,6-dihydroxyindole [20].
  • The results obtained with H2O2 oxidation show that 1) pyrrole-2,3-dicarboxylic acid (PDCA), a specific marker of 5,6-dihydroxyindole units in melanins, is produced in yields ten times higher than by acidic KMnO4 oxidation, and 2) PTCA is artificially produced from pheomelanins [21].
  • Polarographical monitoring of oxygen consumption showed that, among the metabolites examined, 5,6-dihydroxyindole (DHI) was the most active in inhibiting AA oxygenation catalysed by 15-lipoxygenase [22].
 

Gene context of 3H-INDOLE-5,6-DIOL

 

Analytical, diagnostic and therapeutic context of 3H-INDOLE-5,6-DIOL

References

  1. Identification of 5-hydroxy-6-indolyl-O-sulfate in urine of patients with malignant melanoma. Pavel, S., Boverhof, R., Wolthers, B.G. J. Invest. Dermatol. (1984) [Pubmed]
  2. Molecular cloning of human D-dopachrome tautomerase cDNA: N-terminal proline is essential for enzyme activation. Nishihira, J., Fujinaga, M., Kuriyama, T., Suzuki, M., Sugimoto, H., Nakagawa, A., Tanaka, I., Sakai, M. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  3. Restriction patterns of model DNA treated with 5,6-dihydroxyindole, a potent cytotoxic intermediate of melanin synthesis: effect of u.v. irradiation. Miranda, M., Bonfigli, A., Zarivi, O., Manilla, A., Cimini, A.M., Arcadi, A. Mutagenesis (1987) [Pubmed]
  4. The inherent cytotoxicity of melanin precursors: a revision. Urabe, K., Aroca, P., Tsukamoto, K., Mascagna, D., Palumbo, A., Prota, G., Hearing, V.J. Biochim. Biophys. Acta (1994) [Pubmed]
  5. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Han, Q., Fang, J., Ding, H., Johnson, J.K., Christensen, B.M., Li, J. Biochem. J. (2002) [Pubmed]
  6. Differences in subcellular distribution of catechol-O-methyltransferase and tyrosinase in malignant melanoma. Shibata, T., Pavel, S., Smit, N.P., Mishima, Y. J. Invest. Dermatol. (1993) [Pubmed]
  7. Dynamics of melanogenesis intermediates. Pavel, S. J. Invest. Dermatol. (1993) [Pubmed]
  8. Melanin monomers within coated vesicles and premelanosomes in melanin synthesizing cells. Hatta, S., Mishima, Y., Ichihashi, M., Ito, S. J. Invest. Dermatol. (1988) [Pubmed]
  9. Dopachrome oxidoreductase: a new enzyme in the pigment pathway. Barber, J.I., Townsend, D., Olds, D.P., King, R.A. J. Invest. Dermatol. (1984) [Pubmed]
  10. Electrochemical identification of dopachrome isomerase in Drosophila melanogaster. Li, J., Nappi, A.J. Biochem. Biophys. Res. Commun. (1991) [Pubmed]
  11. 5,6-Dihydroxyindole oxidation by mammalian, mushroom and amphibian tyrosinase preparations. Miranda, M., Botti, D., Bonfigli, A., Arcadi, A. Biochim. Biophys. Acta (1985) [Pubmed]
  12. Catechol O-methyltransferase. 12. Affinity labeling the active site with the oxidation products of 5,6-dihydroxyindole. Borchardt, R.T., Bhatia, P. J. Med. Chem. (1982) [Pubmed]
  13. Isolation of a new tautomerase monitored by the conversion of D-dopachrome to 5,6-dihydroxyindole. Odh, G., Hindemith, A., Rosengren, A.M., Rosengren, E., Rorsman, H. Biochem. Biophys. Res. Commun. (1993) [Pubmed]
  14. Metabolism of 3-indolylacetic acid during percutaneous absorption in human skin. Ademola, J.I., Wester, R.C., Maibach, H.I. Journal of pharmaceutical sciences. (1993) [Pubmed]
  15. Molecular approach to the nucleo-melanosomal interaction in human melanoma cells. Miranda, M., Zarivi, O., Amicarelli, F., Ragnelli, A.M., Aimola, P., Porretta, R., Natali, P.G., Arcadi, A., Savino, M., Poma, A., Bonfigli, A. J. Neurooncol. (1997) [Pubmed]
  16. Mutagenicity test for unstable compounds, such as 5,6-dihydroxyindole, using an Escherichia coli HB101/pBR322 transfection system. Miranda, M., Amicarelli, F., Bonfigli, A., Poma, A., Zarivi, O., Arcadi, A. Mutagenesis (1990) [Pubmed]
  17. Neurotoxicity due to o-quinones: neuromelanin formation and possible mechanisms for o-quinone detoxification. Solano, F., Hearing, V.J., García-Borrón, J.C. Neurotoxicity research. (2000) [Pubmed]
  18. Fe(III)-Coordination Properties of Neuromelanin Components: 5,6-Dihydroxyindole and 5,6-Dihydroxyindole-2-carboxylic Acid. Charkoudian, L.K., Franz, K.J. Inorganic chemistry. (2006) [Pubmed]
  19. Dopaquinone redox exchange with dihydroxyindole and dihydroxyindole carboxylic acid. Edge, R., d'Ischia, M., Land, E.J., Napolitano, A., Navaratnam, S., Panzella, L., Pezzella, A., Ramsden, C.A., Riley, P.A. Pigment Cell Res. (2006) [Pubmed]
  20. Macrophage migration inhibitory factor (MIF): its essential role in the immune system and cell growth. Nishihira, J. J. Interferon Cytokine Res. (2000) [Pubmed]
  21. Chemical degradation of melanins: application to identification of dopamine-melanin. Ito, S., Wakamatsu, K. Pigment Cell Res. (1998) [Pubmed]
  22. Inhibitory effect of melanin precursors on arachidonic acid peroxidation. Napolitano, A., Palumbo, A., Misuraca, G., Prota, G. Biochim. Biophys. Acta (1993) [Pubmed]
  23. Role of neurofibromin in modulation of expression of the tyrosinase-related protein 2 gene. Suzuki, H., Takahashi, K., Yasumoto, K., Amae, S., Yoshizawa, M., Fuse, N., Shibahara, S. J. Biochem. (1998) [Pubmed]
  24. Tyrosinase-like activity in normal human substantia nigra. Miranda, M., Botti, D., Bonfigli, A., Ventura, T., Arcadi, A. Gen. Pharmacol. (1984) [Pubmed]
  25. Cloning of the mouse gene for D-dopachrome tautomerase. Kuriyama, T., Fujinaga, M., Koda, T., Nishihira, J. Biochim. Biophys. Acta (1998) [Pubmed]
  26. Regulation of the final phase of mammalian melanogenesis. The role of dopachrome tautomerase and the ratio between 5,6-dihydroxyindole-2-carboxylic acid and 5,6-dihydroxyindole. Aroca, P., Solano, F., Salinas, C., García-Borrón, J.C., Lozano, J.A. Eur. J. Biochem. (1992) [Pubmed]
  27. The expression of tyrosinase, tyrosinase-related proteins 1 and 2 (TRP1 and TRP2), the silver protein, and a melanogenic inhibitor in human melanoma cells of differing melanogenic activities. Kameyama, K., Sakai, C., Kuge, S., Nishiyama, S., Tomita, Y., Ito, S., Wakamatsu, K., Hearing, V.J. Pigment Cell Res. (1995) [Pubmed]
  28. One-electron oxidation of C(2) and C(3) methyl substituted 5,6-dihydroxyindoles: model pathways of melanogenesis. al-Kazwini, A.T., O'Neill, P., Adams, G.E., Cundall, R.B., Maignan, J., Junino, A. Melanoma Res. (1994) [Pubmed]
  29. Melanogenesis in Cryptococcus neoformans. Polacheck, I., Kwon-Chung, K.J. J. Gen. Microbiol. (1988) [Pubmed]
 
WikiGenes - Universities